基于循环平稳和频谱分解的OFDM中ML盲信道估计

A. A. Quadeer, T. Al-Naffouri
{"title":"基于循环平稳和频谱分解的OFDM中ML盲信道估计","authors":"A. A. Quadeer, T. Al-Naffouri","doi":"10.1109/SPAWC.2010.5671265","DOIUrl":null,"url":null,"abstract":"Channel estimation is vital in OFDM systems for efficient data recovery. In this paper, we propose a blind algorithm for channel estimation that is based on the assumption that the transmitted data in an OFDM system is Gaussian (by central limit arguments). The channel estimate can then be obtained by maximizing the output likelihood function. Unfortunately, the likelihood function turns out to be multi-modal and thus finding the global maxima is challenging. We rely on spectral factorization and the cyclostationarity of the output to obtain the correct channel zeros. The Genetic algorithm is then used to fine tune the obtained solution.","PeriodicalId":436215,"journal":{"name":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ML blind channel estimation in OFDM using cyclostationarity and spectral factorization\",\"authors\":\"A. A. Quadeer, T. Al-Naffouri\",\"doi\":\"10.1109/SPAWC.2010.5671265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel estimation is vital in OFDM systems for efficient data recovery. In this paper, we propose a blind algorithm for channel estimation that is based on the assumption that the transmitted data in an OFDM system is Gaussian (by central limit arguments). The channel estimate can then be obtained by maximizing the output likelihood function. Unfortunately, the likelihood function turns out to be multi-modal and thus finding the global maxima is challenging. We rely on spectral factorization and the cyclostationarity of the output to obtain the correct channel zeros. The Genetic algorithm is then used to fine tune the obtained solution.\",\"PeriodicalId\":436215,\"journal\":{\"name\":\"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2010.5671265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2010.5671265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

信道估计是OFDM系统中有效恢复数据的关键。在本文中,我们提出了一种盲信道估计算法,该算法基于OFDM系统中传输数据是高斯的假设(通过中心限制参数)。然后可以通过最大化输出似然函数来获得信道估计。不幸的是,似然函数是多模态的,因此找到全局最大值是一项挑战。我们依靠频谱分解和输出的循环平稳性来获得正确的信道零点。然后利用遗传算法对得到的解进行微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML blind channel estimation in OFDM using cyclostationarity and spectral factorization
Channel estimation is vital in OFDM systems for efficient data recovery. In this paper, we propose a blind algorithm for channel estimation that is based on the assumption that the transmitted data in an OFDM system is Gaussian (by central limit arguments). The channel estimate can then be obtained by maximizing the output likelihood function. Unfortunately, the likelihood function turns out to be multi-modal and thus finding the global maxima is challenging. We rely on spectral factorization and the cyclostationarity of the output to obtain the correct channel zeros. The Genetic algorithm is then used to fine tune the obtained solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信