多模态配方理解的多级多模态变压器网络

Ao Liu, Shuai Yuan, Chenbin Zhang, Congjian Luo, Yaqing Liao, Kun Bai, Zenglin Xu
{"title":"多模态配方理解的多级多模态变压器网络","authors":"Ao Liu, Shuai Yuan, Chenbin Zhang, Congjian Luo, Yaqing Liao, Kun Bai, Zenglin Xu","doi":"10.1145/3397271.3401247","DOIUrl":null,"url":null,"abstract":"Multimodal Machine Comprehension ($\\rm M^3C$) has been a challenging task that requires understanding both language and vision, as well as their integration and interaction. For example, the RecipeQA challenge, which provides several $\\rm M^3C$ tasks, requires deep neural models to understand textual instructions, images of different steps, as well as the logic orders of food cooking. To address this challenge, we propose a Multi-Level Multi-Modal Transformer (MLMM-Trans) framework to integrate and understand multiple textual instructions and multiple images. Our model can conduct intensive attention mechanism at multiple levels of objects (e.g., step level and passage-image level) for sequences of different modalities. Experiments have shown that our model can achieve the state-of-the-art results on the three multimodal tasks of RecipeQA.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-Level Multimodal Transformer Network for Multimodal Recipe Comprehension\",\"authors\":\"Ao Liu, Shuai Yuan, Chenbin Zhang, Congjian Luo, Yaqing Liao, Kun Bai, Zenglin Xu\",\"doi\":\"10.1145/3397271.3401247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal Machine Comprehension ($\\\\rm M^3C$) has been a challenging task that requires understanding both language and vision, as well as their integration and interaction. For example, the RecipeQA challenge, which provides several $\\\\rm M^3C$ tasks, requires deep neural models to understand textual instructions, images of different steps, as well as the logic orders of food cooking. To address this challenge, we propose a Multi-Level Multi-Modal Transformer (MLMM-Trans) framework to integrate and understand multiple textual instructions and multiple images. Our model can conduct intensive attention mechanism at multiple levels of objects (e.g., step level and passage-image level) for sequences of different modalities. Experiments have shown that our model can achieve the state-of-the-art results on the three multimodal tasks of RecipeQA.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

多模态机器理解一直是一项具有挑战性的任务,需要理解语言和视觉,以及它们的集成和交互。例如,RecipeQA挑战,它提供了几个任务,需要深度神经模型来理解文本指令,不同步骤的图像,以及食物烹饪的逻辑顺序。为了解决这一挑战,我们提出了一个多层次多模态转换器(MLMM-Trans)框架来整合和理解多个文本指令和多个图像。我们的模型可以针对不同模态的序列在物体的多个层次(例如步骤级和通道-图像级)上进行强化注意机制。实验表明,我们的模型可以在RecipeQA的三个多模态任务上达到最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Level Multimodal Transformer Network for Multimodal Recipe Comprehension
Multimodal Machine Comprehension ($\rm M^3C$) has been a challenging task that requires understanding both language and vision, as well as their integration and interaction. For example, the RecipeQA challenge, which provides several $\rm M^3C$ tasks, requires deep neural models to understand textual instructions, images of different steps, as well as the logic orders of food cooking. To address this challenge, we propose a Multi-Level Multi-Modal Transformer (MLMM-Trans) framework to integrate and understand multiple textual instructions and multiple images. Our model can conduct intensive attention mechanism at multiple levels of objects (e.g., step level and passage-image level) for sequences of different modalities. Experiments have shown that our model can achieve the state-of-the-art results on the three multimodal tasks of RecipeQA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信