压水堆预期碳14产出量及排放研究

Pengtao Fu
{"title":"压水堆预期碳14产出量及排放研究","authors":"Pengtao Fu","doi":"10.1115/icone29-92807","DOIUrl":null,"url":null,"abstract":"\n Carbon-14 is one of the most important radionuclides discharged to the environment from pressurized water reactors due to its long half-life and its important role in the biological chain. Carbon-14 is the largest contributor of the dose rate to the public from all radionuclides discharged to the environment during the normal operation of pressurized water reactors, and thus the production and discharge of Carbon-14 have been focused on in the industry in recent years.\n Based on the generation mechanism in pressurized water reactor, one theoretical model of Carbon-14 generation has been established and the nitrogen concentration of all chemical species in the primary loops has been determined according to the measured ammonium. It predicts that the annual Carbon-14 generation in the primary loops is proportional to annual electricity output and the typical normalized Carbon-14 is 2.9E+02 GBq/GWe/yr. The theoretical model has been verified by the statistical analysis of annual Carbon-14 discharges from French PWR units. In addition, the quantity of Carbon-14 in radioactive solid waste has been estimated in these PWR units. It shows the generation of Carbon-14 in PWR cannot be effectively minimized because O-17 atoms, the predominant origin of Carbon-14, exist naturally in the primary loops during long-term operation. This approach can be applied to analyze the Carbon-14 production and discharges in operating pressurized water reactors and in the assessment of source term of the new pressurized water reactors.","PeriodicalId":249213,"journal":{"name":"Volume 9: Decontamination and Decommissioning, Radiation Protection, and Waste Management","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Expected Carbon-14 Production and Discharge in Pressurized Water Reactors\",\"authors\":\"Pengtao Fu\",\"doi\":\"10.1115/icone29-92807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Carbon-14 is one of the most important radionuclides discharged to the environment from pressurized water reactors due to its long half-life and its important role in the biological chain. Carbon-14 is the largest contributor of the dose rate to the public from all radionuclides discharged to the environment during the normal operation of pressurized water reactors, and thus the production and discharge of Carbon-14 have been focused on in the industry in recent years.\\n Based on the generation mechanism in pressurized water reactor, one theoretical model of Carbon-14 generation has been established and the nitrogen concentration of all chemical species in the primary loops has been determined according to the measured ammonium. It predicts that the annual Carbon-14 generation in the primary loops is proportional to annual electricity output and the typical normalized Carbon-14 is 2.9E+02 GBq/GWe/yr. The theoretical model has been verified by the statistical analysis of annual Carbon-14 discharges from French PWR units. In addition, the quantity of Carbon-14 in radioactive solid waste has been estimated in these PWR units. It shows the generation of Carbon-14 in PWR cannot be effectively minimized because O-17 atoms, the predominant origin of Carbon-14, exist naturally in the primary loops during long-term operation. This approach can be applied to analyze the Carbon-14 production and discharges in operating pressurized water reactors and in the assessment of source term of the new pressurized water reactors.\",\"PeriodicalId\":249213,\"journal\":{\"name\":\"Volume 9: Decontamination and Decommissioning, Radiation Protection, and Waste Management\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Decontamination and Decommissioning, Radiation Protection, and Waste Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-92807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Decontamination and Decommissioning, Radiation Protection, and Waste Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-92807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碳-14由于其较长的半衰期和在生物链中的重要作用,是压水堆排放到环境中的最重要的放射性核素之一。在压水堆正常运行过程中排放到环境中的所有放射性核素中,碳-14对公众的剂量率贡献最大,因此碳-14的生产和排放是近年来工业界关注的焦点。根据压水堆中碳-14的生成机理,建立了碳-14生成的理论模型,并根据实测的氨氮测定了一次回路中各化学物质的氮浓度。预测一次回路的年碳14发电量与年发电量成正比,典型的标准化碳14为2.9E+02 GBq/GWe/年。通过对法国压水堆机组年碳-14排放量的统计分析,验证了理论模型的有效性。此外,还对这些压水堆机组放射性固体废物中的碳-14含量进行了估算。结果表明,在长期运行过程中,压水堆中碳14的主要来源O-17原子自然存在于主回路中,因此不能有效地减少碳14的产生。该方法可应用于运行中的压水堆碳-14的产生和排放分析以及新建压水堆的源项评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the Expected Carbon-14 Production and Discharge in Pressurized Water Reactors
Carbon-14 is one of the most important radionuclides discharged to the environment from pressurized water reactors due to its long half-life and its important role in the biological chain. Carbon-14 is the largest contributor of the dose rate to the public from all radionuclides discharged to the environment during the normal operation of pressurized water reactors, and thus the production and discharge of Carbon-14 have been focused on in the industry in recent years. Based on the generation mechanism in pressurized water reactor, one theoretical model of Carbon-14 generation has been established and the nitrogen concentration of all chemical species in the primary loops has been determined according to the measured ammonium. It predicts that the annual Carbon-14 generation in the primary loops is proportional to annual electricity output and the typical normalized Carbon-14 is 2.9E+02 GBq/GWe/yr. The theoretical model has been verified by the statistical analysis of annual Carbon-14 discharges from French PWR units. In addition, the quantity of Carbon-14 in radioactive solid waste has been estimated in these PWR units. It shows the generation of Carbon-14 in PWR cannot be effectively minimized because O-17 atoms, the predominant origin of Carbon-14, exist naturally in the primary loops during long-term operation. This approach can be applied to analyze the Carbon-14 production and discharges in operating pressurized water reactors and in the assessment of source term of the new pressurized water reactors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信