大规模并行分层结构的高性能映射

Sotirios G. Ziavras
{"title":"大规模并行分层结构的高性能映射","authors":"Sotirios G. Ziavras","doi":"10.1109/FMPC.1990.89467","DOIUrl":null,"url":null,"abstract":"Techniques for mapping image processing and computer vision algorithms onto a class of hierarchically structured systems are presented. In order to produce mappings of maximum efficiency, objective functions that measure the quality of given mappings with respect to particular optimization goals are proposed. The effectiveness and the computation complexity of mapping algorithms that yield very high performance by minimizing the objective functions are discussed. Performance results are also presented.<<ETX>>","PeriodicalId":193332,"journal":{"name":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High performance mapping for massively parallel hierarchical structures\",\"authors\":\"Sotirios G. Ziavras\",\"doi\":\"10.1109/FMPC.1990.89467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Techniques for mapping image processing and computer vision algorithms onto a class of hierarchically structured systems are presented. In order to produce mappings of maximum efficiency, objective functions that measure the quality of given mappings with respect to particular optimization goals are proposed. The effectiveness and the computation complexity of mapping algorithms that yield very high performance by minimizing the objective functions are discussed. Performance results are also presented.<<ETX>>\",\"PeriodicalId\":193332,\"journal\":{\"name\":\"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMPC.1990.89467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMPC.1990.89467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了将图像处理和计算机视觉算法映射到一类层次结构系统的技术。为了产生效率最高的映射,提出了相对于特定优化目标衡量给定映射质量的目标函数。讨论了通过最小化目标函数而产生高性能的映射算法的有效性和计算复杂度。并给出了性能结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High performance mapping for massively parallel hierarchical structures
Techniques for mapping image processing and computer vision algorithms onto a class of hierarchically structured systems are presented. In order to produce mappings of maximum efficiency, objective functions that measure the quality of given mappings with respect to particular optimization goals are proposed. The effectiveness and the computation complexity of mapping algorithms that yield very high performance by minimizing the objective functions are discussed. Performance results are also presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信