将触摸生物识别技术应用于移动一次性密码:数字探索

Rubén Tolosana, R. Vera-Rodríguez, Julian Fierrez, J. Ortega-Garcia
{"title":"将触摸生物识别技术应用于移动一次性密码:数字探索","authors":"Rubén Tolosana, R. Vera-Rodríguez, Julian Fierrez, J. Ortega-Garcia","doi":"10.1109/CVPRW.2018.00088","DOIUrl":null,"url":null,"abstract":"This work evaluates the advantages and potential of incorporating touch biometrics to mobile one-time passwords (OTP). The new e-BioDigit database, which comprises online handwritten numerical digits from 0 to 9, has been acquired using the finger touch as input to a mobile device. This database is used in the experiments reported in this work and it is publicly available to the research community. An analysis of the OTP scenario using handwritten digits is carried out regarding which are the most discriminative handwritten digits and how robust the system is when increasing the number of them in the user password. Additionally, the best features for each handwritten numerical digit are studied in order to enhance our proposed biometric system. Our proposed approach achieves remarkable results with EERs ca. 5.0% when using skilled forgeries, outperforming other traditional biometric verification traits such as the handwritten signature or graphical passwords on similar mobile scenarios.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Incorporating Touch Biometrics to Mobile One-Time Passwords: Exploration of Digits\",\"authors\":\"Rubén Tolosana, R. Vera-Rodríguez, Julian Fierrez, J. Ortega-Garcia\",\"doi\":\"10.1109/CVPRW.2018.00088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work evaluates the advantages and potential of incorporating touch biometrics to mobile one-time passwords (OTP). The new e-BioDigit database, which comprises online handwritten numerical digits from 0 to 9, has been acquired using the finger touch as input to a mobile device. This database is used in the experiments reported in this work and it is publicly available to the research community. An analysis of the OTP scenario using handwritten digits is carried out regarding which are the most discriminative handwritten digits and how robust the system is when increasing the number of them in the user password. Additionally, the best features for each handwritten numerical digit are studied in order to enhance our proposed biometric system. Our proposed approach achieves remarkable results with EERs ca. 5.0% when using skilled forgeries, outperforming other traditional biometric verification traits such as the handwritten signature or graphical passwords on similar mobile scenarios.\",\"PeriodicalId\":150600,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2018.00088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

这项工作评估了将触摸生物识别技术与移动一次性密码(OTP)相结合的优势和潜力。新的e-BioDigit数据库由在线手写数字0至9组成,使用手指触摸作为移动设备的输入。该数据库用于本工作中报告的实验,并向研究界公开提供。对使用手写数字的OTP场景进行了分析,分析了哪些是最具区别性的手写数字,以及当增加用户密码中的手写数字数量时系统的鲁棒性如何。此外,研究了每个手写数字的最佳特征,以增强我们提出的生物识别系统。我们提出的方法在使用熟练的伪造时取得了显著的结果,EERs约为5.0%,优于其他传统的生物识别验证特征,如在类似的移动场景中手写签名或图形密码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating Touch Biometrics to Mobile One-Time Passwords: Exploration of Digits
This work evaluates the advantages and potential of incorporating touch biometrics to mobile one-time passwords (OTP). The new e-BioDigit database, which comprises online handwritten numerical digits from 0 to 9, has been acquired using the finger touch as input to a mobile device. This database is used in the experiments reported in this work and it is publicly available to the research community. An analysis of the OTP scenario using handwritten digits is carried out regarding which are the most discriminative handwritten digits and how robust the system is when increasing the number of them in the user password. Additionally, the best features for each handwritten numerical digit are studied in order to enhance our proposed biometric system. Our proposed approach achieves remarkable results with EERs ca. 5.0% when using skilled forgeries, outperforming other traditional biometric verification traits such as the handwritten signature or graphical passwords on similar mobile scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信