高维线性回归模型中的推理

Tom Boot, D. Nibbering
{"title":"高维线性回归模型中的推理","authors":"Tom Boot, D. Nibbering","doi":"10.2139/ssrn.2932785","DOIUrl":null,"url":null,"abstract":"We introduce an asymptotically unbiased estimator for the full high-dimensional parameter vector in linear regression models where the number of variables exceeds the number of available observations. The estimator is accompanied by a closed-form expression for the covariance matrix of the estimates that is free of tuning parameters. This enables the construction of confidence intervals that are valid uniformly over the parameter vector. Estimates are obtained by using a scaled Moore-Penrose pseudoinverse as an approximate inverse of the singular empirical covariance matrix of the regressors. The approximation induces a bias, which is then corrected for using the lasso. Regularization of the pseudoinverse is shown to yield narrower confidence intervals under a suitable choice of the regularization parameter. The methods are illustrated in Monte Carlo experiments and in an empirical example where gross domestic product is explained by a large number of macroeconomic and financial indicators.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference in High-Dimensional Linear Regression Models\",\"authors\":\"Tom Boot, D. Nibbering\",\"doi\":\"10.2139/ssrn.2932785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an asymptotically unbiased estimator for the full high-dimensional parameter vector in linear regression models where the number of variables exceeds the number of available observations. The estimator is accompanied by a closed-form expression for the covariance matrix of the estimates that is free of tuning parameters. This enables the construction of confidence intervals that are valid uniformly over the parameter vector. Estimates are obtained by using a scaled Moore-Penrose pseudoinverse as an approximate inverse of the singular empirical covariance matrix of the regressors. The approximation induces a bias, which is then corrected for using the lasso. Regularization of the pseudoinverse is shown to yield narrower confidence intervals under a suitable choice of the regularization parameter. The methods are illustrated in Monte Carlo experiments and in an empirical example where gross domestic product is explained by a large number of macroeconomic and financial indicators.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2932785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2932785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个渐近无偏估计,用于线性回归模型中变量数量超过可用观测数的全高维参数向量。该估计量伴随着一个不含调谐参数的估计协方差矩阵的封闭表达式。这使得构造在参数向量上一致有效的置信区间成为可能。估计是通过使用一个缩放的Moore-Penrose伪逆作为回归量的奇异经验协方差矩阵的近似逆来获得的。近似产生一个偏差,然后用套索修正。在适当选择正则化参数的情况下,对伪逆进行正则化可以产生更窄的置信区间。这些方法在蒙特卡洛实验和一个经验例子中得到说明,其中国内生产总值是由大量宏观经济和金融指标解释的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inference in High-Dimensional Linear Regression Models
We introduce an asymptotically unbiased estimator for the full high-dimensional parameter vector in linear regression models where the number of variables exceeds the number of available observations. The estimator is accompanied by a closed-form expression for the covariance matrix of the estimates that is free of tuning parameters. This enables the construction of confidence intervals that are valid uniformly over the parameter vector. Estimates are obtained by using a scaled Moore-Penrose pseudoinverse as an approximate inverse of the singular empirical covariance matrix of the regressors. The approximation induces a bias, which is then corrected for using the lasso. Regularization of the pseudoinverse is shown to yield narrower confidence intervals under a suitable choice of the regularization parameter. The methods are illustrated in Monte Carlo experiments and in an empirical example where gross domestic product is explained by a large number of macroeconomic and financial indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信