一种用于嵌入式视觉系统的轻量级立体匹配网络

Jo-In Kang, Seong-Won Lee
{"title":"一种用于嵌入式视觉系统的轻量级立体匹配网络","authors":"Jo-In Kang, Seong-Won Lee","doi":"10.1109/ICTC49870.2020.9289158","DOIUrl":null,"url":null,"abstract":"In the embedded computer vision field, the stereo vision matching using two cameras can identify the distance of the surrounding environment at low prices. Recently, CNN based artificial intelligence algorithms have been showing good results with high accuracy. However, huge network size and slow computation prevent them used in embedded edge systems. In this paper, a CNN algorithm to use reduced parameters to find a accurate disparity map of stereoscopic images based on Siamese network is proposed. The proposed method performs network training through GPU-based parallel operation and produces better results than the existing one using fewer parameters.","PeriodicalId":282243,"journal":{"name":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Light-weight stereo matching network for an embedded vision system\",\"authors\":\"Jo-In Kang, Seong-Won Lee\",\"doi\":\"10.1109/ICTC49870.2020.9289158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the embedded computer vision field, the stereo vision matching using two cameras can identify the distance of the surrounding environment at low prices. Recently, CNN based artificial intelligence algorithms have been showing good results with high accuracy. However, huge network size and slow computation prevent them used in embedded edge systems. In this paper, a CNN algorithm to use reduced parameters to find a accurate disparity map of stereoscopic images based on Siamese network is proposed. The proposed method performs network training through GPU-based parallel operation and produces better results than the existing one using fewer parameters.\",\"PeriodicalId\":282243,\"journal\":{\"name\":\"2020 International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC49870.2020.9289158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC49870.2020.9289158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在嵌入式计算机视觉领域,采用双摄像头的立体视觉匹配可以以较低的价格识别出周围环境的距离。最近,基于CNN的人工智能算法已经显示出良好的效果,准确率很高。然而,巨大的网络规模和慢计算阻止他们用于嵌入式边缘系统。本文提出了一种基于Siamese网络的CNN算法,利用约简参数找到立体图像的精确视差图。该方法通过基于gpu的并行运算进行网络训练,使用更少的参数,取得了比现有方法更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Light-weight stereo matching network for an embedded vision system
In the embedded computer vision field, the stereo vision matching using two cameras can identify the distance of the surrounding environment at low prices. Recently, CNN based artificial intelligence algorithms have been showing good results with high accuracy. However, huge network size and slow computation prevent them used in embedded edge systems. In this paper, a CNN algorithm to use reduced parameters to find a accurate disparity map of stereoscopic images based on Siamese network is proposed. The proposed method performs network training through GPU-based parallel operation and produces better results than the existing one using fewer parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信