基于变压器的变化检测特征增强和重加权

Sicheng Shao, Zheng Lu, Bin Zhang, Xuetao Zhang
{"title":"基于变压器的变化检测特征增强和重加权","authors":"Sicheng Shao, Zheng Lu, Bin Zhang, Xuetao Zhang","doi":"10.1109/CAC57257.2022.10055045","DOIUrl":null,"url":null,"abstract":"As Transformer is more widely used in the domain of Computer Vision (CV), modern techniques for Change Detection (CD) have also begun to use Transformer structures, including Bitemporal Image Transformer (BIT). Although BIT shows excellent performance due to its efficient context modeling ability, the simple backbone network and the Cross-Entropy (CE) loss it uses still have room for improvement. In this paper, we propose a Feature Pyramid Network of Change Detection (FPN-CD) and a Change Detection focal (CDF) loss to address the shortcomings of the BIT method. Meanwhile, the outcomes of ablation experiments performed on two CD datasets attest to the method's efficacy.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Enhancement and Reweighting for Transformer-Based Change Detection\",\"authors\":\"Sicheng Shao, Zheng Lu, Bin Zhang, Xuetao Zhang\",\"doi\":\"10.1109/CAC57257.2022.10055045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As Transformer is more widely used in the domain of Computer Vision (CV), modern techniques for Change Detection (CD) have also begun to use Transformer structures, including Bitemporal Image Transformer (BIT). Although BIT shows excellent performance due to its efficient context modeling ability, the simple backbone network and the Cross-Entropy (CE) loss it uses still have room for improvement. In this paper, we propose a Feature Pyramid Network of Change Detection (FPN-CD) and a Change Detection focal (CDF) loss to address the shortcomings of the BIT method. Meanwhile, the outcomes of ablation experiments performed on two CD datasets attest to the method's efficacy.\",\"PeriodicalId\":287137,\"journal\":{\"name\":\"2022 China Automation Congress (CAC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 China Automation Congress (CAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAC57257.2022.10055045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10055045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着Transformer在计算机视觉(CV)领域的广泛应用,现代变化检测(CD)技术也开始使用Transformer结构,包括bittemporal Image Transformer (BIT)。尽管BIT由于其高效的上下文建模能力而表现出优异的性能,但其简单的骨干网络和使用的交叉熵(Cross-Entropy, CE)损失仍有改进的空间。在本文中,我们提出了变化检测的特征金字塔网络(FPN-CD)和变化检测焦点(CDF)损失来解决BIT方法的缺点。同时,在两个CD数据集上进行的消融实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Enhancement and Reweighting for Transformer-Based Change Detection
As Transformer is more widely used in the domain of Computer Vision (CV), modern techniques for Change Detection (CD) have also begun to use Transformer structures, including Bitemporal Image Transformer (BIT). Although BIT shows excellent performance due to its efficient context modeling ability, the simple backbone network and the Cross-Entropy (CE) loss it uses still have room for improvement. In this paper, we propose a Feature Pyramid Network of Change Detection (FPN-CD) and a Change Detection focal (CDF) loss to address the shortcomings of the BIT method. Meanwhile, the outcomes of ablation experiments performed on two CD datasets attest to the method's efficacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信