{"title":"基于阵列技术的波场合成与分析","authors":"D. de Vries, M. M. Boone","doi":"10.1109/ASPAA.1999.810838","DOIUrl":null,"url":null,"abstract":"The concept of wave field synthesis (WFS) was introduced by Betkhout in 1988. It enables the generation of sound fields with natural temporal and spatial properties within a volume or area bounded by arrays of loudspeakers. Applications are found in real time performances as well as in reproduction of multitrack recordings. A logic next step was the formulation of a new wave field analysis (WFA) concept by Berkhout in 1997, where sound fields in enclosures are recorded with arrays of microphones and analyzed with postprocessing techniques commonly used in acoustical imaging. This way, both the temporal and spatial properties of the sound field can be investigated and understood. WFS and WFA meet in auralization applications: sound fields measured (or modeled) along arrays of microphone positions can be generated by arrays of loudspeakers for perceptual evaluation.","PeriodicalId":229733,"journal":{"name":"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Wave field synthesis and analysis using array technology\",\"authors\":\"D. de Vries, M. M. Boone\",\"doi\":\"10.1109/ASPAA.1999.810838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of wave field synthesis (WFS) was introduced by Betkhout in 1988. It enables the generation of sound fields with natural temporal and spatial properties within a volume or area bounded by arrays of loudspeakers. Applications are found in real time performances as well as in reproduction of multitrack recordings. A logic next step was the formulation of a new wave field analysis (WFA) concept by Berkhout in 1997, where sound fields in enclosures are recorded with arrays of microphones and analyzed with postprocessing techniques commonly used in acoustical imaging. This way, both the temporal and spatial properties of the sound field can be investigated and understood. WFS and WFA meet in auralization applications: sound fields measured (or modeled) along arrays of microphone positions can be generated by arrays of loudspeakers for perceptual evaluation.\",\"PeriodicalId\":229733,\"journal\":{\"name\":\"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPAA.1999.810838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPAA.1999.810838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wave field synthesis and analysis using array technology
The concept of wave field synthesis (WFS) was introduced by Betkhout in 1988. It enables the generation of sound fields with natural temporal and spatial properties within a volume or area bounded by arrays of loudspeakers. Applications are found in real time performances as well as in reproduction of multitrack recordings. A logic next step was the formulation of a new wave field analysis (WFA) concept by Berkhout in 1997, where sound fields in enclosures are recorded with arrays of microphones and analyzed with postprocessing techniques commonly used in acoustical imaging. This way, both the temporal and spatial properties of the sound field can be investigated and understood. WFS and WFA meet in auralization applications: sound fields measured (or modeled) along arrays of microphone positions can be generated by arrays of loudspeakers for perceptual evaluation.