完全弹性流体热力学

B. Bernstein, E. Kearsley, L. J. Zapas
{"title":"完全弹性流体热力学","authors":"B. Bernstein, E. Kearsley, L. J. Zapas","doi":"10.6028/JRES.068B.016","DOIUrl":null,"url":null,"abstract":"A simple non.equilibrium thermodynamics is developed and a particular example is studied. The theory is formulated to describe a viscoelastic fluid, capable of finite deformation, which need not be locally in or near a state of thermodynamic equilibrium. This fluid may support shear stresses only when away from local thermodynamic equilibrium _ A notion of time-temperature superposition is contained in the formulation of the constitutive equations. Conservation of energy is obeyed and the second law of thermudynamics is satisfied as a consequence of simple requirements on the constitutive relations. In an adiabatic isochoric motion the temperature increases when work is done on the material and decreases when the material does work. For given volume and temperature, e ntropy decrea ses whe n the mate rial is deformed from equ il ibrium . It is s hown in what general way viscos it y depends upon te mperature . For infinites imal s train, the special form of the stress-s train relations are derived in order to de termine how t.e mpe rature and t ime-t e mperature supe rpos ition e nte r in thi s case.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1964-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Thermodynamics of perfect elastic fluids\",\"authors\":\"B. Bernstein, E. Kearsley, L. J. Zapas\",\"doi\":\"10.6028/JRES.068B.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple non.equilibrium thermodynamics is developed and a particular example is studied. The theory is formulated to describe a viscoelastic fluid, capable of finite deformation, which need not be locally in or near a state of thermodynamic equilibrium. This fluid may support shear stresses only when away from local thermodynamic equilibrium _ A notion of time-temperature superposition is contained in the formulation of the constitutive equations. Conservation of energy is obeyed and the second law of thermudynamics is satisfied as a consequence of simple requirements on the constitutive relations. In an adiabatic isochoric motion the temperature increases when work is done on the material and decreases when the material does work. For given volume and temperature, e ntropy decrea ses whe n the mate rial is deformed from equ il ibrium . It is s hown in what general way viscos it y depends upon te mperature . For infinites imal s train, the special form of the stress-s train relations are derived in order to de termine how t.e mpe rature and t ime-t e mperature supe rpos ition e nte r in thi s case.\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1964-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.068B.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.068B.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

一个简单的否定。发展了平衡热力学,并研究了一个具体的例子。该理论是用来描述一种粘弹性流体,具有有限变形能力,不需要局部处于或接近热力学平衡状态。这种流体只有在远离局部热力学平衡时才能承受剪切应力。本构方程的公式中包含了时间-温度叠加的概念。由于对本构关系有简单的要求,就满足了能量守恒和热力学第二定律。在绝热等时运动中,当对物质做功时温度升高,当物质做功时温度降低。对于给定的体积和温度,当材料从等平衡状态变形时,其熵值减小。它显示了粘度一般是如何取决于温度的。为无限imal年代火车,stress-s训练关系的特殊形式派生为了de termine t.e mpe涂改和t ime-t e mperature挂表rpo过渡e《r在thi s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamics of perfect elastic fluids
A simple non.equilibrium thermodynamics is developed and a particular example is studied. The theory is formulated to describe a viscoelastic fluid, capable of finite deformation, which need not be locally in or near a state of thermodynamic equilibrium. This fluid may support shear stresses only when away from local thermodynamic equilibrium _ A notion of time-temperature superposition is contained in the formulation of the constitutive equations. Conservation of energy is obeyed and the second law of thermudynamics is satisfied as a consequence of simple requirements on the constitutive relations. In an adiabatic isochoric motion the temperature increases when work is done on the material and decreases when the material does work. For given volume and temperature, e ntropy decrea ses whe n the mate rial is deformed from equ il ibrium . It is s hown in what general way viscos it y depends upon te mperature . For infinites imal s train, the special form of the stress-s train relations are derived in order to de termine how t.e mpe rature and t ime-t e mperature supe rpos ition e nte r in thi s case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信