基于胸部CT图像的COVID-19无监督检测方法

Prashanth S, K. Devika, V. R. Murthy Oruganti
{"title":"基于胸部CT图像的COVID-19无监督检测方法","authors":"Prashanth S, K. Devika, V. R. Murthy Oruganti","doi":"10.1109/R10-HTC53172.2021.9641513","DOIUrl":null,"url":null,"abstract":"In this work we assume we have data of normal (healthy) and general pneumonia infected subjects. Based on this knowledge, can we predict COVID-19 infection as abnormal health condition? If so what is the severity of infection? This study will help identify new variants, mutations of COVID-19 as abnormal health conditions. In long term, our study can help identify new infections altogether based on data of healthy subjects itself.","PeriodicalId":117626,"journal":{"name":"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Unsupervised Approach for COVID-19 Detection using Chest CT Images\",\"authors\":\"Prashanth S, K. Devika, V. R. Murthy Oruganti\",\"doi\":\"10.1109/R10-HTC53172.2021.9641513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we assume we have data of normal (healthy) and general pneumonia infected subjects. Based on this knowledge, can we predict COVID-19 infection as abnormal health condition? If so what is the severity of infection? This study will help identify new variants, mutations of COVID-19 as abnormal health conditions. In long term, our study can help identify new infections altogether based on data of healthy subjects itself.\",\"PeriodicalId\":117626,\"journal\":{\"name\":\"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/R10-HTC53172.2021.9641513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC53172.2021.9641513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们假设我们有正常(健康)和一般肺炎感染受试者的数据。基于这些知识,我们是否可以将COVID-19感染预测为异常健康状况?如果有,感染的严重程度是什么?这项研究将有助于确定COVID-19的新变异、突变为异常健康状况。从长远来看,我们的研究可以根据健康受试者本身的数据帮助识别新的感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Unsupervised Approach for COVID-19 Detection using Chest CT Images
In this work we assume we have data of normal (healthy) and general pneumonia infected subjects. Based on this knowledge, can we predict COVID-19 infection as abnormal health condition? If so what is the severity of infection? This study will help identify new variants, mutations of COVID-19 as abnormal health conditions. In long term, our study can help identify new infections altogether based on data of healthy subjects itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信