元启发式算法中低层次杂交的分类

S. Masrom, S. Z. Abidin, N. Omar
{"title":"元启发式算法中低层次杂交的分类","authors":"S. Masrom, S. Z. Abidin, N. Omar","doi":"10.1109/ICACI.2012.6463202","DOIUrl":null,"url":null,"abstract":"In the last two decades, a lot of metaheuristics approaches have been discovered to tackle large-scale of combinatorial optimization problems. Among the approaches, one of the most effective is so-called metaheuristics hybridization that tries to combine different strengths of different algorithms. In hybridization techniques, implementing low-level hybridization is considered as the most complicated due to the internal structure modification of the hybrid algorithms. In addition, different components of the hybrid algorithms are strongly inter-dependent and they must fit will together in solving a particular problem. Therefore, determining appropriate components to be retained and dropped or replaced in each of metaheuristic algorithm is a very difficult task. Responding to the complexity, this paper presents a new taxonomy for low-level hybridization. Then, a review of several implementations for low-level hybridization in metaheuristics is given with regards to the taxonomy. The outcome of study is useful in providing guidance for effective implementation of low-level hybridization.","PeriodicalId":404759,"journal":{"name":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A taxonomy of low-level hybridization in metaheuristics algorithms\",\"authors\":\"S. Masrom, S. Z. Abidin, N. Omar\",\"doi\":\"10.1109/ICACI.2012.6463202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last two decades, a lot of metaheuristics approaches have been discovered to tackle large-scale of combinatorial optimization problems. Among the approaches, one of the most effective is so-called metaheuristics hybridization that tries to combine different strengths of different algorithms. In hybridization techniques, implementing low-level hybridization is considered as the most complicated due to the internal structure modification of the hybrid algorithms. In addition, different components of the hybrid algorithms are strongly inter-dependent and they must fit will together in solving a particular problem. Therefore, determining appropriate components to be retained and dropped or replaced in each of metaheuristic algorithm is a very difficult task. Responding to the complexity, this paper presents a new taxonomy for low-level hybridization. Then, a review of several implementations for low-level hybridization in metaheuristics is given with regards to the taxonomy. The outcome of study is useful in providing guidance for effective implementation of low-level hybridization.\",\"PeriodicalId\":404759,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2012.6463202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2012.6463202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的二十年里,人们发现了许多元启发式方法来解决大规模的组合优化问题。在这些方法中,最有效的方法之一是所谓的元启发式杂交,它试图结合不同算法的不同优势。在杂交技术中,由于混合算法内部结构的改变,实现低层次杂交被认为是最复杂的。此外,混合算法的不同组成部分是强相互依赖的,它们必须适合在一起解决一个特定的问题。因此,在每个元启发式算法中确定适当的保留、删除或替换组件是一项非常困难的任务。针对这种复杂性,本文提出了一种新的低水平杂交分类方法。然后,回顾了元启发式中几种低级杂交的实现,并给出了分类。研究结果对有效实施低水平杂交具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A taxonomy of low-level hybridization in metaheuristics algorithms
In the last two decades, a lot of metaheuristics approaches have been discovered to tackle large-scale of combinatorial optimization problems. Among the approaches, one of the most effective is so-called metaheuristics hybridization that tries to combine different strengths of different algorithms. In hybridization techniques, implementing low-level hybridization is considered as the most complicated due to the internal structure modification of the hybrid algorithms. In addition, different components of the hybrid algorithms are strongly inter-dependent and they must fit will together in solving a particular problem. Therefore, determining appropriate components to be retained and dropped or replaced in each of metaheuristic algorithm is a very difficult task. Responding to the complexity, this paper presents a new taxonomy for low-level hybridization. Then, a review of several implementations for low-level hybridization in metaheuristics is given with regards to the taxonomy. The outcome of study is useful in providing guidance for effective implementation of low-level hybridization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信