高效的稀疏矩阵矢量乘法使用压缩图

Ingyu Lee
{"title":"高效的稀疏矩阵矢量乘法使用压缩图","authors":"Ingyu Lee","doi":"10.1109/SECON.2010.5453858","DOIUrl":null,"url":null,"abstract":"Scientific modeling and simulations are popularly used in science and engineering communities to explain complicate phenomena or to extract knowledge from structured or unstructured data along with theoretical analysis and physical experiments. Generally, these models are represented as partial differential equations (PDEs) which can be solved numerically using meshes and sparse matrices. Typically, matrix vector multiplication is the most dominating module in the solution of PDEs. Therefore, efficient matrix vector multiplication algorithm is a critical component in scientific computing simulations. In this paper, we proposed a sparse matrix vector multiplication using compressed graph. Our experiments show that the proposed algorithm reduces cache misses by 65% at best with a little bit of memory overhead.","PeriodicalId":286940,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient sparse matrix vector multiplication using compressed graph\",\"authors\":\"Ingyu Lee\",\"doi\":\"10.1109/SECON.2010.5453858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific modeling and simulations are popularly used in science and engineering communities to explain complicate phenomena or to extract knowledge from structured or unstructured data along with theoretical analysis and physical experiments. Generally, these models are represented as partial differential equations (PDEs) which can be solved numerically using meshes and sparse matrices. Typically, matrix vector multiplication is the most dominating module in the solution of PDEs. Therefore, efficient matrix vector multiplication algorithm is a critical component in scientific computing simulations. In this paper, we proposed a sparse matrix vector multiplication using compressed graph. Our experiments show that the proposed algorithm reduces cache misses by 65% at best with a little bit of memory overhead.\",\"PeriodicalId\":286940,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2010.5453858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2010.5453858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

科学建模和仿真在科学和工程领域广泛用于解释复杂现象或从结构化或非结构化数据中提取知识以及理论分析和物理实验。通常,这些模型被表示为偏微分方程(PDEs),可以使用网格和稀疏矩阵进行数值求解。通常,矩阵向量乘法是偏微分方程解中最主要的模块。因此,高效的矩阵向量乘法算法是科学计算仿真的关键组成部分。本文提出了一种基于压缩图的稀疏矩阵向量乘法算法。我们的实验表明,所提出的算法在少量内存开销的情况下最多减少了65%的缓存丢失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient sparse matrix vector multiplication using compressed graph
Scientific modeling and simulations are popularly used in science and engineering communities to explain complicate phenomena or to extract knowledge from structured or unstructured data along with theoretical analysis and physical experiments. Generally, these models are represented as partial differential equations (PDEs) which can be solved numerically using meshes and sparse matrices. Typically, matrix vector multiplication is the most dominating module in the solution of PDEs. Therefore, efficient matrix vector multiplication algorithm is a critical component in scientific computing simulations. In this paper, we proposed a sparse matrix vector multiplication using compressed graph. Our experiments show that the proposed algorithm reduces cache misses by 65% at best with a little bit of memory overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信