{"title":"高效的稀疏矩阵矢量乘法使用压缩图","authors":"Ingyu Lee","doi":"10.1109/SECON.2010.5453858","DOIUrl":null,"url":null,"abstract":"Scientific modeling and simulations are popularly used in science and engineering communities to explain complicate phenomena or to extract knowledge from structured or unstructured data along with theoretical analysis and physical experiments. Generally, these models are represented as partial differential equations (PDEs) which can be solved numerically using meshes and sparse matrices. Typically, matrix vector multiplication is the most dominating module in the solution of PDEs. Therefore, efficient matrix vector multiplication algorithm is a critical component in scientific computing simulations. In this paper, we proposed a sparse matrix vector multiplication using compressed graph. Our experiments show that the proposed algorithm reduces cache misses by 65% at best with a little bit of memory overhead.","PeriodicalId":286940,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient sparse matrix vector multiplication using compressed graph\",\"authors\":\"Ingyu Lee\",\"doi\":\"10.1109/SECON.2010.5453858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific modeling and simulations are popularly used in science and engineering communities to explain complicate phenomena or to extract knowledge from structured or unstructured data along with theoretical analysis and physical experiments. Generally, these models are represented as partial differential equations (PDEs) which can be solved numerically using meshes and sparse matrices. Typically, matrix vector multiplication is the most dominating module in the solution of PDEs. Therefore, efficient matrix vector multiplication algorithm is a critical component in scientific computing simulations. In this paper, we proposed a sparse matrix vector multiplication using compressed graph. Our experiments show that the proposed algorithm reduces cache misses by 65% at best with a little bit of memory overhead.\",\"PeriodicalId\":286940,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2010.5453858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2010.5453858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient sparse matrix vector multiplication using compressed graph
Scientific modeling and simulations are popularly used in science and engineering communities to explain complicate phenomena or to extract knowledge from structured or unstructured data along with theoretical analysis and physical experiments. Generally, these models are represented as partial differential equations (PDEs) which can be solved numerically using meshes and sparse matrices. Typically, matrix vector multiplication is the most dominating module in the solution of PDEs. Therefore, efficient matrix vector multiplication algorithm is a critical component in scientific computing simulations. In this paper, we proposed a sparse matrix vector multiplication using compressed graph. Our experiments show that the proposed algorithm reduces cache misses by 65% at best with a little bit of memory overhead.