可控力矩陀螺仪的非线性离散时间模型

R. Sakata, S. Kawai, Triet Nguyen-Van
{"title":"可控力矩陀螺仪的非线性离散时间模型","authors":"R. Sakata, S. Kawai, Triet Nguyen-Van","doi":"10.23919/SICEISCS54350.2022.9754375","DOIUrl":null,"url":null,"abstract":"A controlled moment gyroscope (CMG) is usually used as an actuator to control the attitude of artificial satellites and spacecrafts by applying the gyro effect. To design and analyze a digital controller of the CMG, it requires a discrete-time model, which can be derived by discretizing a continuous-time model. Since the CMG is nonlinear and has an affine constrain for a nonholonomic system, its linear approximation becomes uncontrollable and unavailable for control design. This paper proposed a discrete-time model for the CMG system, which does not use the linear approximation of the continuous-time model, by using a method called continualized discretization proposed. Simulation results show that the proposed model yields better performances than the conventional forward difference model in reproducing the dynamical characteristic of the continuous-time model, even for a large sampling interval and fast dynamical response.","PeriodicalId":391189,"journal":{"name":"2022 SICE International Symposium on Control Systems (SICE ISCS)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Nonlinear Discrete-time Model for Controlled Moment Gyroscope\",\"authors\":\"R. Sakata, S. Kawai, Triet Nguyen-Van\",\"doi\":\"10.23919/SICEISCS54350.2022.9754375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A controlled moment gyroscope (CMG) is usually used as an actuator to control the attitude of artificial satellites and spacecrafts by applying the gyro effect. To design and analyze a digital controller of the CMG, it requires a discrete-time model, which can be derived by discretizing a continuous-time model. Since the CMG is nonlinear and has an affine constrain for a nonholonomic system, its linear approximation becomes uncontrollable and unavailable for control design. This paper proposed a discrete-time model for the CMG system, which does not use the linear approximation of the continuous-time model, by using a method called continualized discretization proposed. Simulation results show that the proposed model yields better performances than the conventional forward difference model in reproducing the dynamical characteristic of the continuous-time model, even for a large sampling interval and fast dynamical response.\",\"PeriodicalId\":391189,\"journal\":{\"name\":\"2022 SICE International Symposium on Control Systems (SICE ISCS)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 SICE International Symposium on Control Systems (SICE ISCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SICEISCS54350.2022.9754375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 SICE International Symposium on Control Systems (SICE ISCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SICEISCS54350.2022.9754375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

控制力矩陀螺仪(CMG)是利用陀螺效应控制人造卫星和航天器姿态的常用作动器。为了设计和分析CMG的数字控制器,需要一个离散时间模型,该模型可以通过离散化连续时间模型得到。由于CMG是非完整系统的非线性和仿射约束,其线性逼近变得不可控,无法用于控制设计。本文采用连续化离散化方法,提出了一种不使用连续时间模型的线性逼近的CMG系统离散模型。仿真结果表明,即使在大采样间隔和快速动态响应的情况下,该模型在再现连续时间模型的动态特性方面也优于传统的正演差分模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Nonlinear Discrete-time Model for Controlled Moment Gyroscope
A controlled moment gyroscope (CMG) is usually used as an actuator to control the attitude of artificial satellites and spacecrafts by applying the gyro effect. To design and analyze a digital controller of the CMG, it requires a discrete-time model, which can be derived by discretizing a continuous-time model. Since the CMG is nonlinear and has an affine constrain for a nonholonomic system, its linear approximation becomes uncontrollable and unavailable for control design. This paper proposed a discrete-time model for the CMG system, which does not use the linear approximation of the continuous-time model, by using a method called continualized discretization proposed. Simulation results show that the proposed model yields better performances than the conventional forward difference model in reproducing the dynamical characteristic of the continuous-time model, even for a large sampling interval and fast dynamical response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信