简单查询作为Twitter上预测性别的距离标签

NUT@EMNLP Pub Date : 2017-09-01 DOI:10.18653/v1/W17-4407
Chris Emmery, Grzegorz Chrupała, Walter Daelemans
{"title":"简单查询作为Twitter上预测性别的距离标签","authors":"Chris Emmery, Grzegorz Chrupała, Walter Daelemans","doi":"10.18653/v1/W17-4407","DOIUrl":null,"url":null,"abstract":"The majority of research on extracting missing user attributes from social media profiles use costly hand-annotated labels for supervised learning. Distantly supervised methods exist, although these generally rely on knowledge gathered using external sources. This paper demonstrates the effectiveness of gathering distant labels for self-reported gender on Twitter using simple queries. We confirm the reliability of this query heuristic by comparing with manual annotation. Moreover, using these labels for distant supervision, we demonstrate competitive model performance on the same data as models trained on manual annotations. As such, we offer a cheap, extensible, and fast alternative that can be employed beyond the task of gender classification.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Simple Queries as Distant Labels for Predicting Gender on Twitter\",\"authors\":\"Chris Emmery, Grzegorz Chrupała, Walter Daelemans\",\"doi\":\"10.18653/v1/W17-4407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of research on extracting missing user attributes from social media profiles use costly hand-annotated labels for supervised learning. Distantly supervised methods exist, although these generally rely on knowledge gathered using external sources. This paper demonstrates the effectiveness of gathering distant labels for self-reported gender on Twitter using simple queries. We confirm the reliability of this query heuristic by comparing with manual annotation. Moreover, using these labels for distant supervision, we demonstrate competitive model performance on the same data as models trained on manual annotations. As such, we offer a cheap, extensible, and fast alternative that can be employed beyond the task of gender classification.\",\"PeriodicalId\":207795,\"journal\":{\"name\":\"NUT@EMNLP\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NUT@EMNLP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-4407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-4407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

大多数从社交媒体资料中提取缺失用户属性的研究都使用昂贵的手工标注标签进行监督学习。存在远程监督方法,尽管这些方法通常依赖于使用外部资源收集的知识。本文演示了使用简单查询在Twitter上收集自我报告性别的远距离标签的有效性。通过与手工标注的比较,验证了该查询启发式算法的可靠性。此外,使用这些标签进行远程监督,我们在相同的数据上展示了与在手动注释上训练的模型具有竞争力的模型性能。因此,我们提供了一种廉价、可扩展和快速的替代方案,可以用于性别分类之外的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple Queries as Distant Labels for Predicting Gender on Twitter
The majority of research on extracting missing user attributes from social media profiles use costly hand-annotated labels for supervised learning. Distantly supervised methods exist, although these generally rely on knowledge gathered using external sources. This paper demonstrates the effectiveness of gathering distant labels for self-reported gender on Twitter using simple queries. We confirm the reliability of this query heuristic by comparing with manual annotation. Moreover, using these labels for distant supervision, we demonstrate competitive model performance on the same data as models trained on manual annotations. As such, we offer a cheap, extensible, and fast alternative that can be employed beyond the task of gender classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信