多流量无线和移动互联网系统中的资源管理和QoS控制

Yong Xu, Huazhou Liu, Qing-An Zeng
{"title":"多流量无线和移动互联网系统中的资源管理和QoS控制","authors":"Yong Xu, Huazhou Liu, Qing-An Zeng","doi":"10.1002/wcm.360","DOIUrl":null,"url":null,"abstract":"In a multiple service wireless and mobile system, different numbers of channels (or bandwidth) are assigned to different services according to their QoS requirements. Real-time services have the lowest delay tolerance, while they might not need very large bandwidth. Non-real-time services can improve their performance if they are given more bandwidth and they are also not as sensitive to delay as the real-time services. Many channel allocation and resource management schemes have been carried out for wireless system with differentiated services. However, the link status of channel has not been considered very well in those schemes. Many of them just assume that all channels are homogeneous and their status will not charge throughout the service durations. This is not true in real world. In this paper, we take into account the physical channel status in our preemptive priority channel allocation scheme. Transmission rate changes dynamically according to variational channel status as a result of shadowing and fading. Our scheme uses the transmission rate of each channel as one important fact in choosing the channel candidate to be preempted. When the channel originally having a poor transmission rate is assigned to a new user, its link status is very likely to gain some improvements. Therefore, both the user QoS and the system utilization get a boost using this scheme. We evaluate the system performance in terms of blocking probabilities, forced termination probabilities, and average number of user in the system.","PeriodicalId":379037,"journal":{"name":"Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Resource management and QoS control in multiple traffic wireless and mobile Internet systems\",\"authors\":\"Yong Xu, Huazhou Liu, Qing-An Zeng\",\"doi\":\"10.1002/wcm.360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a multiple service wireless and mobile system, different numbers of channels (or bandwidth) are assigned to different services according to their QoS requirements. Real-time services have the lowest delay tolerance, while they might not need very large bandwidth. Non-real-time services can improve their performance if they are given more bandwidth and they are also not as sensitive to delay as the real-time services. Many channel allocation and resource management schemes have been carried out for wireless system with differentiated services. However, the link status of channel has not been considered very well in those schemes. Many of them just assume that all channels are homogeneous and their status will not charge throughout the service durations. This is not true in real world. In this paper, we take into account the physical channel status in our preemptive priority channel allocation scheme. Transmission rate changes dynamically according to variational channel status as a result of shadowing and fading. Our scheme uses the transmission rate of each channel as one important fact in choosing the channel candidate to be preempted. When the channel originally having a poor transmission rate is assigned to a new user, its link status is very likely to gain some improvements. Therefore, both the user QoS and the system utilization get a boost using this scheme. We evaluate the system performance in terms of blocking probabilities, forced termination probabilities, and average number of user in the system.\",\"PeriodicalId\":379037,\"journal\":{\"name\":\"Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wcm.360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wcm.360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在多业务无线和移动系统中,根据不同业务的QoS要求,将不同数量的信道(或带宽)分配给不同的业务。实时业务具有最低的延迟容忍度,但它们可能不需要很大的带宽。如果给予非实时业务更多的带宽,则可以提高其性能,并且它们对延迟的敏感性也不如实时业务。针对具有差异化业务的无线系统,提出了多种信道分配和资源管理方案。然而,这些方案都没有很好地考虑到信道的链路状态。它们中的许多只是假设所有通道都是同构的,并且它们的状态在整个服务期间不会发生变化。这在现实世界中是不正确的。在本文中,我们在优先级信道分配方案中考虑了物理信道的状态。由于信道的阴影和衰落,传输速率随信道状态的变化而动态变化。我们的方案将每个信道的传输速率作为选择要抢占的信道候选的一个重要因素。当原本传输速率较差的信道分配给新用户时,其链路状态很可能得到一些改善。因此,使用该方案可以提高用户的QoS和系统利用率。我们根据阻塞概率、强制终止概率和系统中的平均用户数量来评估系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource management and QoS control in multiple traffic wireless and mobile Internet systems
In a multiple service wireless and mobile system, different numbers of channels (or bandwidth) are assigned to different services according to their QoS requirements. Real-time services have the lowest delay tolerance, while they might not need very large bandwidth. Non-real-time services can improve their performance if they are given more bandwidth and they are also not as sensitive to delay as the real-time services. Many channel allocation and resource management schemes have been carried out for wireless system with differentiated services. However, the link status of channel has not been considered very well in those schemes. Many of them just assume that all channels are homogeneous and their status will not charge throughout the service durations. This is not true in real world. In this paper, we take into account the physical channel status in our preemptive priority channel allocation scheme. Transmission rate changes dynamically according to variational channel status as a result of shadowing and fading. Our scheme uses the transmission rate of each channel as one important fact in choosing the channel candidate to be preempted. When the channel originally having a poor transmission rate is assigned to a new user, its link status is very likely to gain some improvements. Therefore, both the user QoS and the system utilization get a boost using this scheme. We evaluate the system performance in terms of blocking probabilities, forced termination probabilities, and average number of user in the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信