结合运动显著性的慢速行为识别算法

Xin Zhang, Yantao Zhu, Li-Juan Deng, Long Qi, Zhang Tao, Jiali Hu
{"title":"结合运动显著性的慢速行为识别算法","authors":"Xin Zhang, Yantao Zhu, Li-Juan Deng, Long Qi, Zhang Tao, Jiali Hu","doi":"10.1117/12.2674969","DOIUrl":null,"url":null,"abstract":"This paper first analyzes three major problems that can be encountered in video behavior recognition tasks: sampled blocks cannot be focused on motion regions, global motion affects recognition results, and the network's spatio-temporal modeling capability is weak. To address these three problems, we propose the SlowFast behavior recognition algorithm (MASlowFast) that incorporates motion saliency as an application scenario for mine personnel safety behavior recognition. The specific solutions are the sampling method based on motion saliency, the extraction of motion boundary features, and the spatio-temporal segmentation strategy of fast and slow channels. Finally, we validated the effectiveness and accuracy of the algorithm in this paper by ablation experiments on UCF101 dataset and HMDB51 dataset.","PeriodicalId":286364,"journal":{"name":"Conference on Computer Graphics, Artificial Intelligence, and Data Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A SlowFast behavior recognition algorithm incorporating motion saliency\",\"authors\":\"Xin Zhang, Yantao Zhu, Li-Juan Deng, Long Qi, Zhang Tao, Jiali Hu\",\"doi\":\"10.1117/12.2674969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper first analyzes three major problems that can be encountered in video behavior recognition tasks: sampled blocks cannot be focused on motion regions, global motion affects recognition results, and the network's spatio-temporal modeling capability is weak. To address these three problems, we propose the SlowFast behavior recognition algorithm (MASlowFast) that incorporates motion saliency as an application scenario for mine personnel safety behavior recognition. The specific solutions are the sampling method based on motion saliency, the extraction of motion boundary features, and the spatio-temporal segmentation strategy of fast and slow channels. Finally, we validated the effectiveness and accuracy of the algorithm in this paper by ablation experiments on UCF101 dataset and HMDB51 dataset.\",\"PeriodicalId\":286364,\"journal\":{\"name\":\"Conference on Computer Graphics, Artificial Intelligence, and Data Processing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Graphics, Artificial Intelligence, and Data Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2674969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Graphics, Artificial Intelligence, and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2674969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先分析了视频行为识别任务中可能遇到的三个主要问题:采样块不能集中在运动区域,全局运动影响识别结果,网络的时空建模能力较弱。为了解决这三个问题,我们提出了结合运动显著性的慢速行为识别算法(MASlowFast)作为矿井人员安全行为识别的应用场景。具体解决方案是基于运动显著性的采样方法、运动边界特征的提取以及快慢通道的时空分割策略。最后,在UCF101数据集和HMDB51数据集上进行烧蚀实验,验证了本文算法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A SlowFast behavior recognition algorithm incorporating motion saliency
This paper first analyzes three major problems that can be encountered in video behavior recognition tasks: sampled blocks cannot be focused on motion regions, global motion affects recognition results, and the network's spatio-temporal modeling capability is weak. To address these three problems, we propose the SlowFast behavior recognition algorithm (MASlowFast) that incorporates motion saliency as an application scenario for mine personnel safety behavior recognition. The specific solutions are the sampling method based on motion saliency, the extraction of motion boundary features, and the spatio-temporal segmentation strategy of fast and slow channels. Finally, we validated the effectiveness and accuracy of the algorithm in this paper by ablation experiments on UCF101 dataset and HMDB51 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信