浅谈深度学习在镜头设计中的应用

Geoffroi Côté, Jean-François Lalonde, S. Thibault
{"title":"浅谈深度学习在镜头设计中的应用","authors":"Geoffroi Côté, Jean-François Lalonde, S. Thibault","doi":"10.1117/12.2603656","DOIUrl":null,"url":null,"abstract":"Data-driven methods to assist lens design have recently begun to emerge, in particular under the form of lens design extrapolation: using machine learning, the features of successful lens design forms can be extracted, then recombined to create new designs. Here, we discuss the core aspects and next challenges of the LensNet framework, a deep learning-enabled tool that leverages lens design extrapolation as a more powerful alternative to lens design databases when searching for starting points. We also propose to borrow ideas and tools from the practice of machine learning and deep learning, and integrate them into standard lens design optimization. Namely, we recommend using automatic differentiation to power ray tracing engines, along with considering recent and powerful first-order gradient-based optimizers, and using data-driven glass models that are more suited for optimization than traditional variables.","PeriodicalId":231516,"journal":{"name":"International Optical Design Conference 2021","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the use of deep learning for lens design\",\"authors\":\"Geoffroi Côté, Jean-François Lalonde, S. Thibault\",\"doi\":\"10.1117/12.2603656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven methods to assist lens design have recently begun to emerge, in particular under the form of lens design extrapolation: using machine learning, the features of successful lens design forms can be extracted, then recombined to create new designs. Here, we discuss the core aspects and next challenges of the LensNet framework, a deep learning-enabled tool that leverages lens design extrapolation as a more powerful alternative to lens design databases when searching for starting points. We also propose to borrow ideas and tools from the practice of machine learning and deep learning, and integrate them into standard lens design optimization. Namely, we recommend using automatic differentiation to power ray tracing engines, along with considering recent and powerful first-order gradient-based optimizers, and using data-driven glass models that are more suited for optimization than traditional variables.\",\"PeriodicalId\":231516,\"journal\":{\"name\":\"International Optical Design Conference 2021\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Optical Design Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2603656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Optical Design Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2603656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

最近开始出现数据驱动的方法来辅助镜头设计,特别是在镜头设计外推的形式下:利用机器学习,可以提取成功的镜头设计形式的特征,然后重新组合以创建新的设计。在这里,我们讨论了LensNet框架的核心方面和下一个挑战,这是一个深度学习支持的工具,在搜索起点时,它利用镜头设计外推作为镜头设计数据库的更强大替代方案。我们还建议从机器学习和深度学习的实践中借鉴思想和工具,并将其整合到标准的镜头设计优化中。也就是说,我们建议使用自动微分来驱动光线追踪引擎,同时考虑最新和强大的基于一阶梯度的优化器,并使用比传统变量更适合优化的数据驱动玻璃模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the use of deep learning for lens design
Data-driven methods to assist lens design have recently begun to emerge, in particular under the form of lens design extrapolation: using machine learning, the features of successful lens design forms can be extracted, then recombined to create new designs. Here, we discuss the core aspects and next challenges of the LensNet framework, a deep learning-enabled tool that leverages lens design extrapolation as a more powerful alternative to lens design databases when searching for starting points. We also propose to borrow ideas and tools from the practice of machine learning and deep learning, and integrate them into standard lens design optimization. Namely, we recommend using automatic differentiation to power ray tracing engines, along with considering recent and powerful first-order gradient-based optimizers, and using data-driven glass models that are more suited for optimization than traditional variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信