一种快速收敛的加权高斯-赛德尔迭代算法

D. Shen, Li Chen, Qiang Li, Tong Chen, Fengfeng Zhao
{"title":"一种快速收敛的加权高斯-赛德尔迭代算法","authors":"D. Shen, Li Chen, Qiang Li, Tong Chen, Fengfeng Zhao","doi":"10.1109/ISCTIS58954.2023.10213210","DOIUrl":null,"url":null,"abstract":"Unacceptable amounts of computation can be generated in massive multiple-input multiple-output (MIMO) systems with minimum mean squared error (MMSE) detection at the received side. A weighted Gauss-Seidel iterative algorithm with fast convergence is launched. The proposed algorithm uses a mixture of Conjugate Gradient and Jacobi iterations to select the optimal search direction. Then weighting factor is used to accelerate the traditional Gauss-Seidel iterative algorithm. The results show that the detection capability of the scheme has been improved. The theoretical analysis verifies that the proposed algorithm has a lower computational complexity compared to the MMSE algorithm. After simulation analysis, the recommended algorithm can gain better convergence speed and BER function with fewer iterations. If user antennas setting values is similar to base station antennas, the proposed algorithm is significantly better.","PeriodicalId":334790,"journal":{"name":"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Weighted Gauss-Seidel Iterative Algorithm with Fast Convergence\",\"authors\":\"D. Shen, Li Chen, Qiang Li, Tong Chen, Fengfeng Zhao\",\"doi\":\"10.1109/ISCTIS58954.2023.10213210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unacceptable amounts of computation can be generated in massive multiple-input multiple-output (MIMO) systems with minimum mean squared error (MMSE) detection at the received side. A weighted Gauss-Seidel iterative algorithm with fast convergence is launched. The proposed algorithm uses a mixture of Conjugate Gradient and Jacobi iterations to select the optimal search direction. Then weighting factor is used to accelerate the traditional Gauss-Seidel iterative algorithm. The results show that the detection capability of the scheme has been improved. The theoretical analysis verifies that the proposed algorithm has a lower computational complexity compared to the MMSE algorithm. After simulation analysis, the recommended algorithm can gain better convergence speed and BER function with fewer iterations. If user antennas setting values is similar to base station antennas, the proposed algorithm is significantly better.\",\"PeriodicalId\":334790,\"journal\":{\"name\":\"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCTIS58954.2023.10213210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTIS58954.2023.10213210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在接收端具有最小均方误差(MMSE)检测的大规模多输入多输出(MIMO)系统中,可能会产生不可接受的计算量。提出了一种快速收敛的加权高斯-塞德尔迭代算法。该算法采用共轭梯度和雅可比迭代相结合的方法选择最优搜索方向。然后利用加权因子对传统的高斯-塞德尔迭代算法进行加速。结果表明,该方案的检测能力得到了提高。理论分析验证了该算法与MMSE算法相比具有较低的计算复杂度。经过仿真分析,所推荐的算法能够以更少的迭代获得更好的收敛速度和误码率函数。当用户天线设定值与基站天线设定值相近时,所提算法明显优于基站天线设定值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Weighted Gauss-Seidel Iterative Algorithm with Fast Convergence
Unacceptable amounts of computation can be generated in massive multiple-input multiple-output (MIMO) systems with minimum mean squared error (MMSE) detection at the received side. A weighted Gauss-Seidel iterative algorithm with fast convergence is launched. The proposed algorithm uses a mixture of Conjugate Gradient and Jacobi iterations to select the optimal search direction. Then weighting factor is used to accelerate the traditional Gauss-Seidel iterative algorithm. The results show that the detection capability of the scheme has been improved. The theoretical analysis verifies that the proposed algorithm has a lower computational complexity compared to the MMSE algorithm. After simulation analysis, the recommended algorithm can gain better convergence speed and BER function with fewer iterations. If user antennas setting values is similar to base station antennas, the proposed algorithm is significantly better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信