P. Vouras, A. Weiss, Maria Becker, B. Jamroz, J. Quimby, Dylan F. Williams, K. Remley
{"title":"基于梯度的虚拟阵列测量最大似然角估计方法","authors":"P. Vouras, A. Weiss, Maria Becker, B. Jamroz, J. Quimby, Dylan F. Williams, K. Remley","doi":"10.1109/GlobalSIP.2018.8646422","DOIUrl":null,"url":null,"abstract":"Precise measurement and characterization of millimeter wave channels requires antennas capable of high angular resolution to resolve closely spaced multipath sources. To achieve angular resolution on the order of a few degrees these antennas must be electrically large which is impractical for phased array architectures at millimeter wave frequencies. An alternative approach is to synthesize a virtual aperture in space by using an accurate mechanical positioner to move a receive antenna to points along a sampling grid. An advantage of creating virtual apertures is that the received signal is digitized at every spatial sample position which enables the use of sophisticated angle estimation algorithms such as maximum likelihood (ML) techniques. The main contribution of this paper is a new gradient-based implementation of maximum likelihood angle estimation that was demonstrated on virtual array data collected at 28 GHz using a vector network analyzer (VNA).","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GRADIENT-BASED SOLUTION OF MAXIMUM LIKELIHOOD ANGLE ESTIMATION FOR VIRTUAL ARRAY MEASUREMENTS\",\"authors\":\"P. Vouras, A. Weiss, Maria Becker, B. Jamroz, J. Quimby, Dylan F. Williams, K. Remley\",\"doi\":\"10.1109/GlobalSIP.2018.8646422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise measurement and characterization of millimeter wave channels requires antennas capable of high angular resolution to resolve closely spaced multipath sources. To achieve angular resolution on the order of a few degrees these antennas must be electrically large which is impractical for phased array architectures at millimeter wave frequencies. An alternative approach is to synthesize a virtual aperture in space by using an accurate mechanical positioner to move a receive antenna to points along a sampling grid. An advantage of creating virtual apertures is that the received signal is digitized at every spatial sample position which enables the use of sophisticated angle estimation algorithms such as maximum likelihood (ML) techniques. The main contribution of this paper is a new gradient-based implementation of maximum likelihood angle estimation that was demonstrated on virtual array data collected at 28 GHz using a vector network analyzer (VNA).\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GRADIENT-BASED SOLUTION OF MAXIMUM LIKELIHOOD ANGLE ESTIMATION FOR VIRTUAL ARRAY MEASUREMENTS
Precise measurement and characterization of millimeter wave channels requires antennas capable of high angular resolution to resolve closely spaced multipath sources. To achieve angular resolution on the order of a few degrees these antennas must be electrically large which is impractical for phased array architectures at millimeter wave frequencies. An alternative approach is to synthesize a virtual aperture in space by using an accurate mechanical positioner to move a receive antenna to points along a sampling grid. An advantage of creating virtual apertures is that the received signal is digitized at every spatial sample position which enables the use of sophisticated angle estimation algorithms such as maximum likelihood (ML) techniques. The main contribution of this paper is a new gradient-based implementation of maximum likelihood angle estimation that was demonstrated on virtual array data collected at 28 GHz using a vector network analyzer (VNA).