{"title":"基于遗传算法的机器人机械手冗余度求解","authors":"K. K. Aydin, E. Kocaoglan","doi":"10.1109/ISUMA.1995.527715","DOIUrl":null,"url":null,"abstract":"This paper presents a genetic algorithm based approach to redundancy resolution of robot manipulators using self-motion topology knowledge. The genetic algorithm presented can work under joint limits and produces end-effector positions with negligible error. Any solution determined by the genetic algorithm is physically realizable, as demonstrated on a PUMA 700 robot manipulator which is configured as a redundant positional manipulator.","PeriodicalId":298915,"journal":{"name":"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Genetic algorithm based redundancy resolution of robot manipulators\",\"authors\":\"K. K. Aydin, E. Kocaoglan\",\"doi\":\"10.1109/ISUMA.1995.527715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a genetic algorithm based approach to redundancy resolution of robot manipulators using self-motion topology knowledge. The genetic algorithm presented can work under joint limits and produces end-effector positions with negligible error. Any solution determined by the genetic algorithm is physically realizable, as demonstrated on a PUMA 700 robot manipulator which is configured as a redundant positional manipulator.\",\"PeriodicalId\":298915,\"journal\":{\"name\":\"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISUMA.1995.527715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISUMA.1995.527715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic algorithm based redundancy resolution of robot manipulators
This paper presents a genetic algorithm based approach to redundancy resolution of robot manipulators using self-motion topology knowledge. The genetic algorithm presented can work under joint limits and produces end-effector positions with negligible error. Any solution determined by the genetic algorithm is physically realizable, as demonstrated on a PUMA 700 robot manipulator which is configured as a redundant positional manipulator.