基于遗传算法的机器人机械手冗余度求解

K. K. Aydin, E. Kocaoglan
{"title":"基于遗传算法的机器人机械手冗余度求解","authors":"K. K. Aydin, E. Kocaoglan","doi":"10.1109/ISUMA.1995.527715","DOIUrl":null,"url":null,"abstract":"This paper presents a genetic algorithm based approach to redundancy resolution of robot manipulators using self-motion topology knowledge. The genetic algorithm presented can work under joint limits and produces end-effector positions with negligible error. Any solution determined by the genetic algorithm is physically realizable, as demonstrated on a PUMA 700 robot manipulator which is configured as a redundant positional manipulator.","PeriodicalId":298915,"journal":{"name":"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Genetic algorithm based redundancy resolution of robot manipulators\",\"authors\":\"K. K. Aydin, E. Kocaoglan\",\"doi\":\"10.1109/ISUMA.1995.527715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a genetic algorithm based approach to redundancy resolution of robot manipulators using self-motion topology knowledge. The genetic algorithm presented can work under joint limits and produces end-effector positions with negligible error. Any solution determined by the genetic algorithm is physically realizable, as demonstrated on a PUMA 700 robot manipulator which is configured as a redundant positional manipulator.\",\"PeriodicalId\":298915,\"journal\":{\"name\":\"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISUMA.1995.527715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISUMA.1995.527715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于遗传算法的基于自运动拓扑知识的机器人冗余度求解方法。所提出的遗传算法可以在关节极限下工作,产生的末端执行器位置误差可以忽略不计。以配置为冗余位置机械手的PUMA 700机器人为例,说明了遗传算法确定的任意解在物理上都是可实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic algorithm based redundancy resolution of robot manipulators
This paper presents a genetic algorithm based approach to redundancy resolution of robot manipulators using self-motion topology knowledge. The genetic algorithm presented can work under joint limits and produces end-effector positions with negligible error. Any solution determined by the genetic algorithm is physically realizable, as demonstrated on a PUMA 700 robot manipulator which is configured as a redundant positional manipulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信