展望5G增强V2X通信模式4的半持久调度

P. J. Honnaiah, N. Maturo, S. Chatzinotas
{"title":"展望5G增强V2X通信模式4的半持久调度","authors":"P. J. Honnaiah, N. Maturo, S. Chatzinotas","doi":"10.1109/CCNC46108.2020.9045276","DOIUrl":null,"url":null,"abstract":"One of the most dominant applications of Ultra Reliable Low Latency Communication of 5G-NR is V2X communication. For such latency-critical V2X communication, the distributed resource allocation using Semi-Persistent Scheduling (SPS) algorithm designed for out-of-coverage (Mode-4) scenario leads to a high collision probability and requires profuse sensing processes. Therefore, a need for more efficient distributed resource allocation scheme is compelled. In this paper, we investigate the 3GPP proposed SPS scheduling algorithm for its performance and formulate the problem under partial sensing systems. Furthermore, we propose a Foreseeing Semi-Persistent Scheduling (F-SPS) algorithm as an enhancement to the existing methodology, and conclusively, simulations are presented to illustrate the improved performance of the proposed F-SPS scheme in terms of reduced collision probability with an optimised number of sensing processes.","PeriodicalId":443862,"journal":{"name":"2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Foreseeing Semi-Persistent Scheduling in Mode-4 for 5G enhanced V2X communication\",\"authors\":\"P. J. Honnaiah, N. Maturo, S. Chatzinotas\",\"doi\":\"10.1109/CCNC46108.2020.9045276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most dominant applications of Ultra Reliable Low Latency Communication of 5G-NR is V2X communication. For such latency-critical V2X communication, the distributed resource allocation using Semi-Persistent Scheduling (SPS) algorithm designed for out-of-coverage (Mode-4) scenario leads to a high collision probability and requires profuse sensing processes. Therefore, a need for more efficient distributed resource allocation scheme is compelled. In this paper, we investigate the 3GPP proposed SPS scheduling algorithm for its performance and formulate the problem under partial sensing systems. Furthermore, we propose a Foreseeing Semi-Persistent Scheduling (F-SPS) algorithm as an enhancement to the existing methodology, and conclusively, simulations are presented to illustrate the improved performance of the proposed F-SPS scheme in terms of reduced collision probability with an optimised number of sensing processes.\",\"PeriodicalId\":443862,\"journal\":{\"name\":\"2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC46108.2020.9045276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC46108.2020.9045276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

5G-NR超可靠低延迟通信最主要的应用之一是V2X通信。对于这种延迟关键型V2X通信,采用针对非覆盖(Mode-4)场景设计的半持久调度(Semi-Persistent Scheduling, SPS)算法进行分布式资源分配,导致碰撞概率高,需要大量的感知过程。因此,需要更有效的分布式资源分配方案。本文研究了3GPP提出的SPS调度算法的性能,并给出了部分感知系统下的调度问题。此外,我们提出了一种可预见的半持久调度(F-SPS)算法作为现有方法的增强,最后,通过优化感知过程的数量来说明所提出的F-SPS方案在降低碰撞概率方面的改进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foreseeing Semi-Persistent Scheduling in Mode-4 for 5G enhanced V2X communication
One of the most dominant applications of Ultra Reliable Low Latency Communication of 5G-NR is V2X communication. For such latency-critical V2X communication, the distributed resource allocation using Semi-Persistent Scheduling (SPS) algorithm designed for out-of-coverage (Mode-4) scenario leads to a high collision probability and requires profuse sensing processes. Therefore, a need for more efficient distributed resource allocation scheme is compelled. In this paper, we investigate the 3GPP proposed SPS scheduling algorithm for its performance and formulate the problem under partial sensing systems. Furthermore, we propose a Foreseeing Semi-Persistent Scheduling (F-SPS) algorithm as an enhancement to the existing methodology, and conclusively, simulations are presented to illustrate the improved performance of the proposed F-SPS scheme in terms of reduced collision probability with an optimised number of sensing processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信