基于下推传感器的gpu加速数据转换框架

Tri Nguyen, M. Becchi
{"title":"基于下推传感器的gpu加速数据转换框架","authors":"Tri Nguyen, M. Becchi","doi":"10.1109/HiPC56025.2022.00038","DOIUrl":null,"url":null,"abstract":"With the rise of machine learning and data analytics, the ability to process large and diverse sets of data efficiently has become crucial. Research has shown that data transformation is a key performance bottleneck for applications across a variety of domains, from data analytics to scientific computing. Custom hardware accelerators and GPU implementations targeting specific data transformation tasks can alleviate the problem, but suffer from narrow applicability and lack of generality.To tackle this problem, we propose a GPU-accelerated data transformation engine grounded on pushdown transducers. We define an extended pushdown transducer abstraction (effPDT) that allows expressing a wide range of data transformations in a memory-efficient fashion, and is thus amenable for GPU deployment. The effPDT execution engine utilizes a data streaming model that reduces the application’s memory requirements significantly, facilitating deployment on high- and low-end systems. We showcase our GPU-accelerated engine on a diverse set of transformation tasks covering data encoding/decoding, parsing and querying of structured data, and matrix transformation, and we evaluate it against publicly available CPU and GPU library implementations of the considered data transformation tasks. To understand the benefits of the effPDT abstraction, we extend our data transformation engine to also support finite state transducers (FSTs), we map the considered data transformation tasks on FSTs, and we compare the performance and resource requirements of the FST-based and the effPDT-based implementations.","PeriodicalId":119363,"journal":{"name":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A GPU-accelerated Data Transformation Framework Rooted in Pushdown Transducers\",\"authors\":\"Tri Nguyen, M. Becchi\",\"doi\":\"10.1109/HiPC56025.2022.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rise of machine learning and data analytics, the ability to process large and diverse sets of data efficiently has become crucial. Research has shown that data transformation is a key performance bottleneck for applications across a variety of domains, from data analytics to scientific computing. Custom hardware accelerators and GPU implementations targeting specific data transformation tasks can alleviate the problem, but suffer from narrow applicability and lack of generality.To tackle this problem, we propose a GPU-accelerated data transformation engine grounded on pushdown transducers. We define an extended pushdown transducer abstraction (effPDT) that allows expressing a wide range of data transformations in a memory-efficient fashion, and is thus amenable for GPU deployment. The effPDT execution engine utilizes a data streaming model that reduces the application’s memory requirements significantly, facilitating deployment on high- and low-end systems. We showcase our GPU-accelerated engine on a diverse set of transformation tasks covering data encoding/decoding, parsing and querying of structured data, and matrix transformation, and we evaluate it against publicly available CPU and GPU library implementations of the considered data transformation tasks. To understand the benefits of the effPDT abstraction, we extend our data transformation engine to also support finite state transducers (FSTs), we map the considered data transformation tasks on FSTs, and we compare the performance and resource requirements of the FST-based and the effPDT-based implementations.\",\"PeriodicalId\":119363,\"journal\":{\"name\":\"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC56025.2022.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC56025.2022.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着机器学习和数据分析的兴起,有效处理大量不同数据集的能力变得至关重要。研究表明,从数据分析到科学计算,数据转换是各种领域应用程序的关键性能瓶颈。针对特定数据转换任务的自定义硬件加速器和GPU实现可以缓解这个问题,但适用性狭窄且缺乏通用性。为了解决这个问题,我们提出了一个基于下推传感器的gpu加速数据转换引擎。我们定义了一个扩展的下推传感器抽象(effPDT),它允许以内存高效的方式表达广泛的数据转换,因此适合GPU部署。effPDT执行引擎利用数据流模型,显著降低了应用程序的内存需求,促进了在高端和低端系统上的部署。我们在多种转换任务上展示了我们的GPU加速引擎,这些转换任务包括数据编码/解码、结构化数据的解析和查询以及矩阵转换,并且我们根据所考虑的数据转换任务的公开可用CPU和GPU库实现来评估它。为了理解effPDT抽象的好处,我们扩展了我们的数据转换引擎以支持有限状态传感器(fst),我们将考虑的数据转换任务映射到fst上,我们比较了基于fst和基于effPDT的实现的性能和资源需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GPU-accelerated Data Transformation Framework Rooted in Pushdown Transducers
With the rise of machine learning and data analytics, the ability to process large and diverse sets of data efficiently has become crucial. Research has shown that data transformation is a key performance bottleneck for applications across a variety of domains, from data analytics to scientific computing. Custom hardware accelerators and GPU implementations targeting specific data transformation tasks can alleviate the problem, but suffer from narrow applicability and lack of generality.To tackle this problem, we propose a GPU-accelerated data transformation engine grounded on pushdown transducers. We define an extended pushdown transducer abstraction (effPDT) that allows expressing a wide range of data transformations in a memory-efficient fashion, and is thus amenable for GPU deployment. The effPDT execution engine utilizes a data streaming model that reduces the application’s memory requirements significantly, facilitating deployment on high- and low-end systems. We showcase our GPU-accelerated engine on a diverse set of transformation tasks covering data encoding/decoding, parsing and querying of structured data, and matrix transformation, and we evaluate it against publicly available CPU and GPU library implementations of the considered data transformation tasks. To understand the benefits of the effPDT abstraction, we extend our data transformation engine to also support finite state transducers (FSTs), we map the considered data transformation tasks on FSTs, and we compare the performance and resource requirements of the FST-based and the effPDT-based implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信