{"title":"阈值逻辑中的一个枚举问题","authors":"Zana Kovijanic-Vukicevic","doi":"10.2298/PIM0796129K","DOIUrl":null,"url":null,"abstract":"The number of Boolean threshold functions is investigated. A new lower bound on the number of n-dimensional threshold functions on a set {0, 1,..., K − 1} is given.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An enumerative problem in threshold logic\",\"authors\":\"Zana Kovijanic-Vukicevic\",\"doi\":\"10.2298/PIM0796129K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of Boolean threshold functions is investigated. A new lower bound on the number of n-dimensional threshold functions on a set {0, 1,..., K − 1} is given.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM0796129K\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM0796129K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The number of Boolean threshold functions is investigated. A new lower bound on the number of n-dimensional threshold functions on a set {0, 1,..., K − 1} is given.