Tile LU分解的数据驱动执行

George Matheou, C. Kyriacou, P. Evripidou
{"title":"Tile LU分解的数据驱动执行","authors":"George Matheou, C. Kyriacou, P. Evripidou","doi":"10.1145/3292533.3292534","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to analyze, develop and evaluate the tile LU Decomposition using the FREDDO framework. FREDDO is a C++ framework, based on the DDM model of execution, that supports efficient data-driven execution on conventional processors. The performance evaluation shows that FREDDO scales well and tolerates scheduling overheads and memory latencies effectively. The LU implementation is evaluated in both single-node and distributed execution environments. In both cases our framework achieves very good speedups, especially in the larger problem sizes. Particularly, our framework achieves up to 97% of the maximum possible speedup on a single-node and up to 90% of the maximum possible speedup on a 4-node cluster with a total of 128 cores.","PeriodicalId":195082,"journal":{"name":"Proceedings of the Sixth Workshop on Data-Flow Execution Models for Extreme Scale Computing","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven execution of the Tile LU Decomposition\",\"authors\":\"George Matheou, C. Kyriacou, P. Evripidou\",\"doi\":\"10.1145/3292533.3292534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to analyze, develop and evaluate the tile LU Decomposition using the FREDDO framework. FREDDO is a C++ framework, based on the DDM model of execution, that supports efficient data-driven execution on conventional processors. The performance evaluation shows that FREDDO scales well and tolerates scheduling overheads and memory latencies effectively. The LU implementation is evaluated in both single-node and distributed execution environments. In both cases our framework achieves very good speedups, especially in the larger problem sizes. Particularly, our framework achieves up to 97% of the maximum possible speedup on a single-node and up to 90% of the maximum possible speedup on a 4-node cluster with a total of 128 cores.\",\"PeriodicalId\":195082,\"journal\":{\"name\":\"Proceedings of the Sixth Workshop on Data-Flow Execution Models for Extreme Scale Computing\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth Workshop on Data-Flow Execution Models for Extreme Scale Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292533.3292534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on Data-Flow Execution Models for Extreme Scale Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292533.3292534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是使用FREDDO框架分析、开发和评估单元逻辑单元分解。FREDDO是一个基于DDM执行模型的c++框架,它支持在传统处理器上高效的数据驱动执行。性能评估表明,FREDDO可伸缩性好,并能有效地容忍调度开销和内存延迟。在单节点和分布式执行环境中对LU实现进行评估。在这两种情况下,我们的框架都实现了非常好的加速,特别是在较大的问题规模中。特别是,我们的框架在单节点上实现了高达97%的最大可能加速,在总共128核的4节点集群上实现了高达90%的最大可能加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven execution of the Tile LU Decomposition
The objective of this paper is to analyze, develop and evaluate the tile LU Decomposition using the FREDDO framework. FREDDO is a C++ framework, based on the DDM model of execution, that supports efficient data-driven execution on conventional processors. The performance evaluation shows that FREDDO scales well and tolerates scheduling overheads and memory latencies effectively. The LU implementation is evaluated in both single-node and distributed execution environments. In both cases our framework achieves very good speedups, especially in the larger problem sizes. Particularly, our framework achieves up to 97% of the maximum possible speedup on a single-node and up to 90% of the maximum possible speedup on a 4-node cluster with a total of 128 cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信