Abdulaziz M. Alayba, V. Palade, M. England, R. Iqbal
{"title":"用词表示法改进阿拉伯语情感分析","authors":"Abdulaziz M. Alayba, V. Palade, M. England, R. Iqbal","doi":"10.1109/ASAR.2018.8480191","DOIUrl":null,"url":null,"abstract":"The complexities of Arabic language in morphology, orthography and dialects makes sentiment analysis for Arabic more challenging. Also, text feature extraction from short messages like tweets, in order to gauge the sentiment, makes this task even more difficult. In recent years, deep neural networks were often employed and showed very good results in sentiment classification and natural language processing applications. Word embedding, or word distributing approach, is a current and powerful tool to capture together the closest words from a contextual text.In this paper, we describe how we construct Word2Vec models from a large Arabic corpus obtained from ten newspapers in different Arab countries. By applying different machine learning algorithms and convolutional neural networks with different text feature selections, we report improved accuracy of sentiment classification (91%-95%) on our publicly available Arabic language health sentiment dataset [1].","PeriodicalId":165564,"journal":{"name":"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Improving Sentiment Analysis in Arabic Using Word Representation\",\"authors\":\"Abdulaziz M. Alayba, V. Palade, M. England, R. Iqbal\",\"doi\":\"10.1109/ASAR.2018.8480191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexities of Arabic language in morphology, orthography and dialects makes sentiment analysis for Arabic more challenging. Also, text feature extraction from short messages like tweets, in order to gauge the sentiment, makes this task even more difficult. In recent years, deep neural networks were often employed and showed very good results in sentiment classification and natural language processing applications. Word embedding, or word distributing approach, is a current and powerful tool to capture together the closest words from a contextual text.In this paper, we describe how we construct Word2Vec models from a large Arabic corpus obtained from ten newspapers in different Arab countries. By applying different machine learning algorithms and convolutional neural networks with different text feature selections, we report improved accuracy of sentiment classification (91%-95%) on our publicly available Arabic language health sentiment dataset [1].\",\"PeriodicalId\":165564,\"journal\":{\"name\":\"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAR.2018.8480191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAR.2018.8480191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Sentiment Analysis in Arabic Using Word Representation
The complexities of Arabic language in morphology, orthography and dialects makes sentiment analysis for Arabic more challenging. Also, text feature extraction from short messages like tweets, in order to gauge the sentiment, makes this task even more difficult. In recent years, deep neural networks were often employed and showed very good results in sentiment classification and natural language processing applications. Word embedding, or word distributing approach, is a current and powerful tool to capture together the closest words from a contextual text.In this paper, we describe how we construct Word2Vec models from a large Arabic corpus obtained from ten newspapers in different Arab countries. By applying different machine learning algorithms and convolutional neural networks with different text feature selections, we report improved accuracy of sentiment classification (91%-95%) on our publicly available Arabic language health sentiment dataset [1].