协同网络中带EGC的多双瑞利衰落信道M-Ary PSK调制方案性能分析

B. Talha, M. Patzold, S. Primak
{"title":"协同网络中带EGC的多双瑞利衰落信道M-Ary PSK调制方案性能分析","authors":"B. Talha, M. Patzold, S. Primak","doi":"10.1109/ICCW.2010.5503940","DOIUrl":null,"url":null,"abstract":"This article studies the performance of M-ary phase shift keying (PSK) modulation schemes over mobile-to-mobile (M2M) fading channels with equal gain combining (EGC) in cooperative networks. The frequency-nonselective M2M fading channels are modeled assuming non-line-of-sight (NLOS) propagation conditions. Furthermore, a dual-hop amplify-and-forward relay type cooperative network is taken into consideration here. It is assumed that K diversity branches are present between the source mobile station and the destination mobile station via K mobile relays. The performance of M-ary PSK modulation schemes is analyzed by evaluating the average bit error probability (BEP). We have derived a simple analytical approximation for the average BEP of M-ary PSK modulation schemes over relay-based M2M fading channels with EGC. The validity and accuracy of the analytical approximation is confirmed by simulations. The presented results show that in a dual-hop relay system with EGC, there is a remarkable improvement in the diversity gain as the number of diversity branches K increases.","PeriodicalId":422951,"journal":{"name":"2010 IEEE International Conference on Communications Workshops","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Performance Analysis of M-Ary PSK Modulation Schemes over Multiple Double Rayleigh Fading Channels with EGC in Cooperative Networks\",\"authors\":\"B. Talha, M. Patzold, S. Primak\",\"doi\":\"10.1109/ICCW.2010.5503940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies the performance of M-ary phase shift keying (PSK) modulation schemes over mobile-to-mobile (M2M) fading channels with equal gain combining (EGC) in cooperative networks. The frequency-nonselective M2M fading channels are modeled assuming non-line-of-sight (NLOS) propagation conditions. Furthermore, a dual-hop amplify-and-forward relay type cooperative network is taken into consideration here. It is assumed that K diversity branches are present between the source mobile station and the destination mobile station via K mobile relays. The performance of M-ary PSK modulation schemes is analyzed by evaluating the average bit error probability (BEP). We have derived a simple analytical approximation for the average BEP of M-ary PSK modulation schemes over relay-based M2M fading channels with EGC. The validity and accuracy of the analytical approximation is confirmed by simulations. The presented results show that in a dual-hop relay system with EGC, there is a remarkable improvement in the diversity gain as the number of diversity branches K increases.\",\"PeriodicalId\":422951,\"journal\":{\"name\":\"2010 IEEE International Conference on Communications Workshops\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Communications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2010.5503940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2010.5503940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了在合作网络中等增益组合(EGC)的M2M衰落信道中M-ary相移键控(PSK)调制方案的性能。在非视距(NLOS)传播条件下,对频率非选择性M2M衰落信道进行了建模。此外,本文还考虑了一种双跳放大转发中继型的合作网络。假设在源移动站和目的移动站之间通过K个移动中继存在K个分集分支。通过对平均误码率(BEP)的评估,分析了多种PSK调制方案的性能。我们推导了基于中继的M2M衰落信道上M-ary PSK调制方案的平均BEP的简单解析近似。仿真结果验证了解析近似的有效性和准确性。研究结果表明,在双跳中继系统中,随着分集支路K的增加,分集增益显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of M-Ary PSK Modulation Schemes over Multiple Double Rayleigh Fading Channels with EGC in Cooperative Networks
This article studies the performance of M-ary phase shift keying (PSK) modulation schemes over mobile-to-mobile (M2M) fading channels with equal gain combining (EGC) in cooperative networks. The frequency-nonselective M2M fading channels are modeled assuming non-line-of-sight (NLOS) propagation conditions. Furthermore, a dual-hop amplify-and-forward relay type cooperative network is taken into consideration here. It is assumed that K diversity branches are present between the source mobile station and the destination mobile station via K mobile relays. The performance of M-ary PSK modulation schemes is analyzed by evaluating the average bit error probability (BEP). We have derived a simple analytical approximation for the average BEP of M-ary PSK modulation schemes over relay-based M2M fading channels with EGC. The validity and accuracy of the analytical approximation is confirmed by simulations. The presented results show that in a dual-hop relay system with EGC, there is a remarkable improvement in the diversity gain as the number of diversity branches K increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信