一种量子启发的数值优化人工蜂群算法

Amira Bouaziz, A. Draa, S. Chikhi
{"title":"一种量子启发的数值优化人工蜂群算法","authors":"Amira Bouaziz, A. Draa, S. Chikhi","doi":"10.1109/ISPS.2013.6581498","DOIUrl":null,"url":null,"abstract":"A Quantum-inspired Artificial Bee Colony algorithm (QABC) for numerical optimisation is proposed in this paper. A hybridisation is made between two paradigms: Artificial Bee Colony (ABC) optimisation on one hand and Quantum Computing (QC) principles on the other hand. Some quantum concepts including the quantum bit, states superposition and quantum interference are used to enhance the diversity and computing capabilities of standard ABC algorithm. The experimental results obtained from testing the proposed algorithm on a set of numerical benchmark functions have shown that the QABC is competitive to quantum swarms and evolutionary approaches. It outperforms conventional evolutionary algorithms and quantum-inspired particle swarm algorithm.","PeriodicalId":222438,"journal":{"name":"2013 11th International Symposium on Programming and Systems (ISPS)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Quantum-inspired Artificial Bee Colony algorithm for numerical optimisation\",\"authors\":\"Amira Bouaziz, A. Draa, S. Chikhi\",\"doi\":\"10.1109/ISPS.2013.6581498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Quantum-inspired Artificial Bee Colony algorithm (QABC) for numerical optimisation is proposed in this paper. A hybridisation is made between two paradigms: Artificial Bee Colony (ABC) optimisation on one hand and Quantum Computing (QC) principles on the other hand. Some quantum concepts including the quantum bit, states superposition and quantum interference are used to enhance the diversity and computing capabilities of standard ABC algorithm. The experimental results obtained from testing the proposed algorithm on a set of numerical benchmark functions have shown that the QABC is competitive to quantum swarms and evolutionary approaches. It outperforms conventional evolutionary algorithms and quantum-inspired particle swarm algorithm.\",\"PeriodicalId\":222438,\"journal\":{\"name\":\"2013 11th International Symposium on Programming and Systems (ISPS)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th International Symposium on Programming and Systems (ISPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPS.2013.6581498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Symposium on Programming and Systems (ISPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPS.2013.6581498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

提出了一种量子启发的用于数值优化的人工蜂群算法(QABC)。在人工蜂群(ABC)优化和量子计算(QC)原理两种范式之间进行了杂交。为了提高标准ABC算法的多样性和计算能力,引入了量子比特、态叠加和量子干涉等量子概念。在一组数值基准函数上的实验结果表明,QABC算法与量子群算法和进化算法相比具有一定的竞争力。它优于传统的进化算法和量子启发的粒子群算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quantum-inspired Artificial Bee Colony algorithm for numerical optimisation
A Quantum-inspired Artificial Bee Colony algorithm (QABC) for numerical optimisation is proposed in this paper. A hybridisation is made between two paradigms: Artificial Bee Colony (ABC) optimisation on one hand and Quantum Computing (QC) principles on the other hand. Some quantum concepts including the quantum bit, states superposition and quantum interference are used to enhance the diversity and computing capabilities of standard ABC algorithm. The experimental results obtained from testing the proposed algorithm on a set of numerical benchmark functions have shown that the QABC is competitive to quantum swarms and evolutionary approaches. It outperforms conventional evolutionary algorithms and quantum-inspired particle swarm algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信