使用可选上下文构造树的高层上下文并发推理

Michael R. Krause, Claudia Linnhoff-Popien, Markus Strassberger
{"title":"使用可选上下文构造树的高层上下文并发推理","authors":"Michael R. Krause, Claudia Linnhoff-Popien, Markus Strassberger","doi":"10.1109/CONIELECOMP.2007.67","DOIUrl":null,"url":null,"abstract":"Context aware services rely on context information. However, in many cases this information is not available. In this case, the missing context information can often either be inferred from existing knowledge using different inference approaches, or accessed from external context providers. Thereby, dealing with uncertainty is another major concern. In this paper we present a generic approach called alternative context construction trees (ACCTs) that enables the concurrent evaluation and consolidation of different alternative inference approaches, like logic rules, Bayesian networks and CoCoGraphs. In particular, we introduce a common signature structure to make those alternatives comparable in a generic way. Thereby, the approach is able to adapt dynamically to specific service requirements with respect to the accuracy of available context information. In addition, we present so called Bayesian network templates that enable a light-weight inference of high-level context information if only probabilistic knowledge about the causal interdependencies of context artifacts is available.","PeriodicalId":288478,"journal":{"name":"Third International Conference on Autonomic and Autonomous Systems (ICAS'07)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Concurrent Inference on High Level Context Using Alternative Context Construction Trees\",\"authors\":\"Michael R. Krause, Claudia Linnhoff-Popien, Markus Strassberger\",\"doi\":\"10.1109/CONIELECOMP.2007.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context aware services rely on context information. However, in many cases this information is not available. In this case, the missing context information can often either be inferred from existing knowledge using different inference approaches, or accessed from external context providers. Thereby, dealing with uncertainty is another major concern. In this paper we present a generic approach called alternative context construction trees (ACCTs) that enables the concurrent evaluation and consolidation of different alternative inference approaches, like logic rules, Bayesian networks and CoCoGraphs. In particular, we introduce a common signature structure to make those alternatives comparable in a generic way. Thereby, the approach is able to adapt dynamically to specific service requirements with respect to the accuracy of available context information. In addition, we present so called Bayesian network templates that enable a light-weight inference of high-level context information if only probabilistic knowledge about the causal interdependencies of context artifacts is available.\",\"PeriodicalId\":288478,\"journal\":{\"name\":\"Third International Conference on Autonomic and Autonomous Systems (ICAS'07)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Autonomic and Autonomous Systems (ICAS'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONIELECOMP.2007.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Autonomic and Autonomous Systems (ICAS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2007.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

上下文感知服务依赖于上下文信息。然而,在许多情况下,这些信息是不可用的。在这种情况下,缺失的上下文信息通常可以使用不同的推理方法从现有知识中推断出来,或者从外部上下文提供程序中访问。因此,处理不确定性是另一个主要问题。在本文中,我们提出了一种称为替代上下文构建树(acct)的通用方法,它可以并发评估和整合不同的替代推理方法,如逻辑规则,贝叶斯网络和CoCoGraphs。特别地,我们引入了一个通用的签名结构,使这些备选方案以一种通用的方式进行比较。因此,该方法能够根据可用上下文信息的准确性动态地适应特定的服务需求。此外,我们提出了所谓的贝叶斯网络模板,如果只有关于上下文工件因果相互依赖的概率知识可用,则可以轻量级地推断高级上下文信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concurrent Inference on High Level Context Using Alternative Context Construction Trees
Context aware services rely on context information. However, in many cases this information is not available. In this case, the missing context information can often either be inferred from existing knowledge using different inference approaches, or accessed from external context providers. Thereby, dealing with uncertainty is another major concern. In this paper we present a generic approach called alternative context construction trees (ACCTs) that enables the concurrent evaluation and consolidation of different alternative inference approaches, like logic rules, Bayesian networks and CoCoGraphs. In particular, we introduce a common signature structure to make those alternatives comparable in a generic way. Thereby, the approach is able to adapt dynamically to specific service requirements with respect to the accuracy of available context information. In addition, we present so called Bayesian network templates that enable a light-weight inference of high-level context information if only probabilistic knowledge about the causal interdependencies of context artifacts is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信