连续时间最佳线性无偏估计的对偶逼近及其在连续时间相位估计中的应用

T. Moon, Randy Christensen, J. Gunther
{"title":"连续时间最佳线性无偏估计的对偶逼近及其在连续时间相位估计中的应用","authors":"T. Moon, Randy Christensen, J. Gunther","doi":"10.1109/ietc54973.2022.9796741","DOIUrl":null,"url":null,"abstract":"Best linear unbiased estimator (BLUE) theory is well established for discrete, finite-dimensional vectors, where methods of vector gradients can be used on a constrained optimization problem. However, when the observation is infinite-dimensional (e.g., continuous-time functions), the gradient-based approach can be problematic. We pose the BLUE problem as an instance of a dual approximation problem, which recasts the problem into finite dimensional space employing the principle of orthogonality, requiring no gradients for solution. To demonstrate the ideas, they are first developed on a finite-dimensional problem, then extended to infinite dimensional problems. We present an example application of phase estimation from continuous-time observations.","PeriodicalId":251518,"journal":{"name":"2022 Intermountain Engineering, Technology and Computing (IETC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Dual Approximation for Best Linear Unbiased Estimators in Continuous Time, with Application to Continuous-Time Phase Estimation\",\"authors\":\"T. Moon, Randy Christensen, J. Gunther\",\"doi\":\"10.1109/ietc54973.2022.9796741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Best linear unbiased estimator (BLUE) theory is well established for discrete, finite-dimensional vectors, where methods of vector gradients can be used on a constrained optimization problem. However, when the observation is infinite-dimensional (e.g., continuous-time functions), the gradient-based approach can be problematic. We pose the BLUE problem as an instance of a dual approximation problem, which recasts the problem into finite dimensional space employing the principle of orthogonality, requiring no gradients for solution. To demonstrate the ideas, they are first developed on a finite-dimensional problem, then extended to infinite dimensional problems. We present an example application of phase estimation from continuous-time observations.\",\"PeriodicalId\":251518,\"journal\":{\"name\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Intermountain Engineering, Technology and Computing (IETC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ietc54973.2022.9796741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Intermountain Engineering, Technology and Computing (IETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ietc54973.2022.9796741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最佳线性无偏估计(BLUE)理论是为离散的有限维向量建立的,其中向量梯度方法可以用于约束优化问题。然而,当观测是无限维的(例如,连续时间函数)时,基于梯度的方法可能会有问题。我们将BLUE问题作为对偶逼近问题的一个实例,它利用正交性原理将问题重新映射到有限维空间中,不需要梯度来求解。为了证明这些思想,它们首先在有限维问题上发展,然后扩展到无限维问题。给出了一个基于连续时间观测的相位估计的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Dual Approximation for Best Linear Unbiased Estimators in Continuous Time, with Application to Continuous-Time Phase Estimation
Best linear unbiased estimator (BLUE) theory is well established for discrete, finite-dimensional vectors, where methods of vector gradients can be used on a constrained optimization problem. However, when the observation is infinite-dimensional (e.g., continuous-time functions), the gradient-based approach can be problematic. We pose the BLUE problem as an instance of a dual approximation problem, which recasts the problem into finite dimensional space employing the principle of orthogonality, requiring no gradients for solution. To demonstrate the ideas, they are first developed on a finite-dimensional problem, then extended to infinite dimensional problems. We present an example application of phase estimation from continuous-time observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信