{"title":"基于拉普拉斯特征映射的半监督度量模糊聚类算法","authors":"Hongxi Xia, Shengbing Xu, Wei Cai, Peixuan Chen, Yuanhao Zhu","doi":"10.1109/ISCEIC53685.2021.00012","DOIUrl":null,"url":null,"abstract":"Semi-supervised Metric Fuzzy Clustering (SMUC) is known for taking advantage of prior information of membership to guide clustering. However, SMUC has the following problem: it is easy for SMUC to reduce the effectiveness of priori information of membership guidance because of the sensitivity of algorithm to random noise, which has a negative impact on the performance of SMUC algorithm. In order to solve the problem, we propose a Laplacian Eigenmaps based Semi-supervised Metric Fuzzy Clustering algorithm (LESMUC). Firstly, K nearest neighbors are selected in the data to construct the connected graph; secondly, the weight of the graph is calculated; finally, the objective function is minimized to get the mapping matrix, and the mapping matrix is used to map the data to a new space. This process can reduce the influence of random noise in the data set on the prior information and achieve better clustering effect. Experiments on UCI data and COVID-19 CT images show the effectiveness of the proposed clustering algorithm.","PeriodicalId":342968,"journal":{"name":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laplacian Eigenmaps based Semi-supervised Metric Fuzzy Clustering algorithm\",\"authors\":\"Hongxi Xia, Shengbing Xu, Wei Cai, Peixuan Chen, Yuanhao Zhu\",\"doi\":\"10.1109/ISCEIC53685.2021.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-supervised Metric Fuzzy Clustering (SMUC) is known for taking advantage of prior information of membership to guide clustering. However, SMUC has the following problem: it is easy for SMUC to reduce the effectiveness of priori information of membership guidance because of the sensitivity of algorithm to random noise, which has a negative impact on the performance of SMUC algorithm. In order to solve the problem, we propose a Laplacian Eigenmaps based Semi-supervised Metric Fuzzy Clustering algorithm (LESMUC). Firstly, K nearest neighbors are selected in the data to construct the connected graph; secondly, the weight of the graph is calculated; finally, the objective function is minimized to get the mapping matrix, and the mapping matrix is used to map the data to a new space. This process can reduce the influence of random noise in the data set on the prior information and achieve better clustering effect. Experiments on UCI data and COVID-19 CT images show the effectiveness of the proposed clustering algorithm.\",\"PeriodicalId\":342968,\"journal\":{\"name\":\"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCEIC53685.2021.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC53685.2021.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laplacian Eigenmaps based Semi-supervised Metric Fuzzy Clustering algorithm
Semi-supervised Metric Fuzzy Clustering (SMUC) is known for taking advantage of prior information of membership to guide clustering. However, SMUC has the following problem: it is easy for SMUC to reduce the effectiveness of priori information of membership guidance because of the sensitivity of algorithm to random noise, which has a negative impact on the performance of SMUC algorithm. In order to solve the problem, we propose a Laplacian Eigenmaps based Semi-supervised Metric Fuzzy Clustering algorithm (LESMUC). Firstly, K nearest neighbors are selected in the data to construct the connected graph; secondly, the weight of the graph is calculated; finally, the objective function is minimized to get the mapping matrix, and the mapping matrix is used to map the data to a new space. This process can reduce the influence of random noise in the data set on the prior information and achieve better clustering effect. Experiments on UCI data and COVID-19 CT images show the effectiveness of the proposed clustering algorithm.