M. Eisenbach, C.-G. Zhou, D. Nicholson, G. Brown, J. Larkin, T. Schulthess
{"title":"纳米系统中自由能从头计算的可扩展方法","authors":"M. Eisenbach, C.-G. Zhou, D. Nicholson, G. Brown, J. Larkin, T. Schulthess","doi":"10.1145/1654059.1654125","DOIUrl":null,"url":null,"abstract":"Calculating the thermodynamics of nanoscale systems presents challenges in the simultaneous treatment of the electronic structure, which determines the interactions between atoms, and the statistical fluctuations that become ever more important at shorter length scales. Here we present a highly scalable method that combines ab initio electronic structure techniques, we use the Locally Self-Consitent Multiple Scattering (LSMS) technique, with the Wang-Landau (WL) algorithm to compute free energies and other thermodynamic properties of nanoscale systems. The combined WL-LSMS code is targeted to the study of nanomagnetic systems that have anywhere from about one hundred to a few thousand atoms. The code scales very well on the Cray XT5 system at ORNL, sustaining 1.03 Petaflop/s in double precision on 147,464 cores.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A scalable method for ab initio computation of free energies in nanoscale systems\",\"authors\":\"M. Eisenbach, C.-G. Zhou, D. Nicholson, G. Brown, J. Larkin, T. Schulthess\",\"doi\":\"10.1145/1654059.1654125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calculating the thermodynamics of nanoscale systems presents challenges in the simultaneous treatment of the electronic structure, which determines the interactions between atoms, and the statistical fluctuations that become ever more important at shorter length scales. Here we present a highly scalable method that combines ab initio electronic structure techniques, we use the Locally Self-Consitent Multiple Scattering (LSMS) technique, with the Wang-Landau (WL) algorithm to compute free energies and other thermodynamic properties of nanoscale systems. The combined WL-LSMS code is targeted to the study of nanomagnetic systems that have anywhere from about one hundred to a few thousand atoms. The code scales very well on the Cray XT5 system at ORNL, sustaining 1.03 Petaflop/s in double precision on 147,464 cores.\",\"PeriodicalId\":371415,\"journal\":{\"name\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1654059.1654125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A scalable method for ab initio computation of free energies in nanoscale systems
Calculating the thermodynamics of nanoscale systems presents challenges in the simultaneous treatment of the electronic structure, which determines the interactions between atoms, and the statistical fluctuations that become ever more important at shorter length scales. Here we present a highly scalable method that combines ab initio electronic structure techniques, we use the Locally Self-Consitent Multiple Scattering (LSMS) technique, with the Wang-Landau (WL) algorithm to compute free energies and other thermodynamic properties of nanoscale systems. The combined WL-LSMS code is targeted to the study of nanomagnetic systems that have anywhere from about one hundred to a few thousand atoms. The code scales very well on the Cray XT5 system at ORNL, sustaining 1.03 Petaflop/s in double precision on 147,464 cores.