在AlN衬底上生长高Al含量Al0.85Ga0.15N薄膜的缺陷补偿

M. Zvanut, Subash Paudel, R. Page, Y. Cho, H. Xing, D. Jena
{"title":"在AlN衬底上生长高Al含量Al0.85Ga0.15N薄膜的缺陷补偿","authors":"M. Zvanut, Subash Paudel, R. Page, Y. Cho, H. Xing, D. Jena","doi":"10.1109/CSW55288.2022.9930424","DOIUrl":null,"url":null,"abstract":"AlxGa1-xN is a promising semiconductor for power electronics, but the mechanism for the conductivity produced by Si doping is controversial. In this work, temperature-dependent Hall measurements were conducted to address the conduction mechanism and electron paramagnetic resonance (EPR) was used to observe the Si dopant and other point defects. The samples studied were 0.5 um thick Al0.85Ga0.15N films grown by molecular beam epitaxy on a 1 um AlN film on an AlN substrate. The results reveal a nearly temperature independent carrier density, suggesting impurity band conduction. Notably, 1019 cm−3 carriers were detected at room temperature, despite the presence of several defects detected by EPR. The centers include the neutral donor with DX character and a second center, with as-yet undetermined origin, that likely partially compensates the Si donors during growth. The minimal effect of the unintentional defects and DX-character of the dopant is reasoned to be due to 1) the small energy barrier between the donor and DX level and 2) the low density (1017 cm−3) of the unintentional defects. Thus, although the growth of high Al content AlGaN may incur unwanted defects and the Si dopant may be a DX center, usefully high carrier concentrations may be achieved.","PeriodicalId":382443,"journal":{"name":"2022 Compound Semiconductor Week (CSW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compensating defects in high Al content Al0.85Ga0.15N films grown on an AlN substrate\",\"authors\":\"M. Zvanut, Subash Paudel, R. Page, Y. Cho, H. Xing, D. Jena\",\"doi\":\"10.1109/CSW55288.2022.9930424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AlxGa1-xN is a promising semiconductor for power electronics, but the mechanism for the conductivity produced by Si doping is controversial. In this work, temperature-dependent Hall measurements were conducted to address the conduction mechanism and electron paramagnetic resonance (EPR) was used to observe the Si dopant and other point defects. The samples studied were 0.5 um thick Al0.85Ga0.15N films grown by molecular beam epitaxy on a 1 um AlN film on an AlN substrate. The results reveal a nearly temperature independent carrier density, suggesting impurity band conduction. Notably, 1019 cm−3 carriers were detected at room temperature, despite the presence of several defects detected by EPR. The centers include the neutral donor with DX character and a second center, with as-yet undetermined origin, that likely partially compensates the Si donors during growth. The minimal effect of the unintentional defects and DX-character of the dopant is reasoned to be due to 1) the small energy barrier between the donor and DX level and 2) the low density (1017 cm−3) of the unintentional defects. Thus, although the growth of high Al content AlGaN may incur unwanted defects and the Si dopant may be a DX center, usefully high carrier concentrations may be achieved.\",\"PeriodicalId\":382443,\"journal\":{\"name\":\"2022 Compound Semiconductor Week (CSW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Compound Semiconductor Week (CSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSW55288.2022.9930424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Compound Semiconductor Week (CSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSW55288.2022.9930424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AlxGa1-xN是一种很有前途的电力电子半导体材料,但硅掺杂产生电导率的机制存在争议。在这项工作中,通过温度相关的霍尔测量来解决传导机制,并使用电子顺磁共振(EPR)来观察Si掺杂剂和其他点缺陷。所研究的样品是在AlN衬底上的1 um AlN薄膜上通过分子束外延生长的0.5 um厚Al0.85Ga0.15N薄膜。结果显示载流子密度几乎与温度无关,表明杂质带导电。值得注意的是,尽管EPR检测到存在一些缺陷,但在室温下检测到1019 cm−3载流子。中心包括具有DX特征的中性供体和第二个中心,其来源尚未确定,可能在生长过程中部分补偿Si供体。非故意缺陷和掺杂剂DX特性的影响很小,原因是:(1)供体和DX能级之间的能垒很小;(2)非故意缺陷的密度低(1017 cm−3)。因此,尽管高Al含量的AlGaN的生长可能会产生不必要的缺陷,并且Si掺杂剂可能是DX中心,但可以实现有用的高载流子浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compensating defects in high Al content Al0.85Ga0.15N films grown on an AlN substrate
AlxGa1-xN is a promising semiconductor for power electronics, but the mechanism for the conductivity produced by Si doping is controversial. In this work, temperature-dependent Hall measurements were conducted to address the conduction mechanism and electron paramagnetic resonance (EPR) was used to observe the Si dopant and other point defects. The samples studied were 0.5 um thick Al0.85Ga0.15N films grown by molecular beam epitaxy on a 1 um AlN film on an AlN substrate. The results reveal a nearly temperature independent carrier density, suggesting impurity band conduction. Notably, 1019 cm−3 carriers were detected at room temperature, despite the presence of several defects detected by EPR. The centers include the neutral donor with DX character and a second center, with as-yet undetermined origin, that likely partially compensates the Si donors during growth. The minimal effect of the unintentional defects and DX-character of the dopant is reasoned to be due to 1) the small energy barrier between the donor and DX level and 2) the low density (1017 cm−3) of the unintentional defects. Thus, although the growth of high Al content AlGaN may incur unwanted defects and the Si dopant may be a DX center, usefully high carrier concentrations may be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信