{"title":"网络化控制系统的多线程通信体系结构","authors":"Raazi M. K. Syed","doi":"10.24949/NJES.V12I1.403","DOIUrl":null,"url":null,"abstract":"Advancement in communication technology has paved the way for geographically dislocating controllers from the plants they are controlling. Establishing a secure and reliable communication is an essential component to achieve robust control performance. Myriad network control schemes have been proposed but they are incapacitated due to a lack of reliable software paradigm. This highlights the need of a distributed system, which provides platform for smooth communication between a plant and its controller. In this work, we propose CASAPAC, which is a multi-threaded communication architecture designed to ensure reliable and in-order delivery of information between different modules of a network control system. Any control algorithm can be tested and employed over any network using CASAPAC. An adaptive fuzzy controller and a network based gain scheduled PI (Proportional Integral) controller have been tested on different networks using CASAPAC. In both cases, tests were carried out on a real plant of a coupled tank system. CASAPAC was able to handle all the communication efficiently in different scenarios and good control performance was achieved in both cases.","PeriodicalId":338631,"journal":{"name":"NUST Journal of Engineering Sciences","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-threaded communication architecture for networked control systems\",\"authors\":\"Raazi M. K. Syed\",\"doi\":\"10.24949/NJES.V12I1.403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancement in communication technology has paved the way for geographically dislocating controllers from the plants they are controlling. Establishing a secure and reliable communication is an essential component to achieve robust control performance. Myriad network control schemes have been proposed but they are incapacitated due to a lack of reliable software paradigm. This highlights the need of a distributed system, which provides platform for smooth communication between a plant and its controller. In this work, we propose CASAPAC, which is a multi-threaded communication architecture designed to ensure reliable and in-order delivery of information between different modules of a network control system. Any control algorithm can be tested and employed over any network using CASAPAC. An adaptive fuzzy controller and a network based gain scheduled PI (Proportional Integral) controller have been tested on different networks using CASAPAC. In both cases, tests were carried out on a real plant of a coupled tank system. CASAPAC was able to handle all the communication efficiently in different scenarios and good control performance was achieved in both cases.\",\"PeriodicalId\":338631,\"journal\":{\"name\":\"NUST Journal of Engineering Sciences\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NUST Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24949/NJES.V12I1.403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUST Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24949/NJES.V12I1.403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multi-threaded communication architecture for networked control systems
Advancement in communication technology has paved the way for geographically dislocating controllers from the plants they are controlling. Establishing a secure and reliable communication is an essential component to achieve robust control performance. Myriad network control schemes have been proposed but they are incapacitated due to a lack of reliable software paradigm. This highlights the need of a distributed system, which provides platform for smooth communication between a plant and its controller. In this work, we propose CASAPAC, which is a multi-threaded communication architecture designed to ensure reliable and in-order delivery of information between different modules of a network control system. Any control algorithm can be tested and employed over any network using CASAPAC. An adaptive fuzzy controller and a network based gain scheduled PI (Proportional Integral) controller have been tested on different networks using CASAPAC. In both cases, tests were carried out on a real plant of a coupled tank system. CASAPAC was able to handle all the communication efficiently in different scenarios and good control performance was achieved in both cases.