Ming-Ching Chang, N. Krahnstoever, Ser-Nam Lim, Ting Yu
{"title":"拥挤环境中跨多个摄像头的群体级活动识别","authors":"Ming-Ching Chang, N. Krahnstoever, Ser-Nam Lim, Ting Yu","doi":"10.1109/AVSS.2010.65","DOIUrl":null,"url":null,"abstract":"Environments such as schools, public parks and prisonsand others that contain a large number of people are typi-cally characterized by frequent and complex social interac-tions. In order to identify activities and behaviors in suchenvironments, it is necessary to understand the interactionsthat take place at a group level. To this end, this paper ad-dresses the problem of detecting and predicting suspiciousand in particular aggressive behaviors between groups ofindividuals such as gangs in prison yards. The work buildson a mature multi-camera multi-target person tracking sys-tem that operates in real-time and has the ability to han-dle crowded conditions. We consider two approaches forgrouping individuals: (i) agglomerative clustering favoredby the computer vision community, as well as (ii) decisiveclustering based on the concept of modularity, which is fa-vored by the social network analysis community. We showthe utility of such grouping analysis towards the detectionof group activities of interest. The presented algorithm isintegrated with a system operating in real-time to success-fully detect highly realistic aggressive behaviors enacted bycorrectional officers in a simulated prison environment. Wepresent results from these enactments that demonstrate theefficacy of our approach.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Group Level Activity Recognition in Crowded Environments across Multiple Cameras\",\"authors\":\"Ming-Ching Chang, N. Krahnstoever, Ser-Nam Lim, Ting Yu\",\"doi\":\"10.1109/AVSS.2010.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environments such as schools, public parks and prisonsand others that contain a large number of people are typi-cally characterized by frequent and complex social interac-tions. In order to identify activities and behaviors in suchenvironments, it is necessary to understand the interactionsthat take place at a group level. To this end, this paper ad-dresses the problem of detecting and predicting suspiciousand in particular aggressive behaviors between groups ofindividuals such as gangs in prison yards. The work buildson a mature multi-camera multi-target person tracking sys-tem that operates in real-time and has the ability to han-dle crowded conditions. We consider two approaches forgrouping individuals: (i) agglomerative clustering favoredby the computer vision community, as well as (ii) decisiveclustering based on the concept of modularity, which is fa-vored by the social network analysis community. We showthe utility of such grouping analysis towards the detectionof group activities of interest. The presented algorithm isintegrated with a system operating in real-time to success-fully detect highly realistic aggressive behaviors enacted bycorrectional officers in a simulated prison environment. Wepresent results from these enactments that demonstrate theefficacy of our approach.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Group Level Activity Recognition in Crowded Environments across Multiple Cameras
Environments such as schools, public parks and prisonsand others that contain a large number of people are typi-cally characterized by frequent and complex social interac-tions. In order to identify activities and behaviors in suchenvironments, it is necessary to understand the interactionsthat take place at a group level. To this end, this paper ad-dresses the problem of detecting and predicting suspiciousand in particular aggressive behaviors between groups ofindividuals such as gangs in prison yards. The work buildson a mature multi-camera multi-target person tracking sys-tem that operates in real-time and has the ability to han-dle crowded conditions. We consider two approaches forgrouping individuals: (i) agglomerative clustering favoredby the computer vision community, as well as (ii) decisiveclustering based on the concept of modularity, which is fa-vored by the social network analysis community. We showthe utility of such grouping analysis towards the detectionof group activities of interest. The presented algorithm isintegrated with a system operating in real-time to success-fully detect highly realistic aggressive behaviors enacted bycorrectional officers in a simulated prison environment. Wepresent results from these enactments that demonstrate theefficacy of our approach.