过程工业中基于云服务的数据驱动建模框架的开发

Dominik Polke, Florian Diepers, Elmar Ahle, D. Söffker
{"title":"过程工业中基于云服务的数据驱动建模框架的开发","authors":"Dominik Polke, Florian Diepers, Elmar Ahle, D. Söffker","doi":"10.1109/ICARCE55724.2022.10046584","DOIUrl":null,"url":null,"abstract":"The chemical process industry is currently undergoing a transformation to Chemistry 4.0, where digitalization, modularization, sustainability, and the circular economy are coming into focus. A growing interest in the use of process data with the aim of gaining a better understanding of the production process and conserving resources can be observed. Data-driven modeling is used in chemical industry when the production process is too complex to be described by chemical laws. Gaining knowledge of the chemical relationships can lead to resource-conserving production. In this paper, a framework to optimize the process of data-driven modeling in an industrial environment is presented. For generating data-driven models of industrial processes, many manual and time-consuming steps have to be carried out. This leads to delay in information acquisition and process optimization. Therefore, the presented framework automates these steps to accelerate the process of data-driven modeling. The steps are to extract the data from a process control system (PCS), make the data available for data-driven modeling, train the model, and deploy the model for predicting the process. To achieve high availability of the data and generate data-driven models, cloud services are used. The framework of this paper is applied to a high-throughput formulation system (HTFS) for coatings. In this paper, Gaussian processes are used for data-driven modeling. The evaluation of the framework shows the usefulness in this domain, but also the flexibility and scalability of this framework.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of a Framework for Data-Driven Modeling with Cloud Services in the Process Industry\",\"authors\":\"Dominik Polke, Florian Diepers, Elmar Ahle, D. Söffker\",\"doi\":\"10.1109/ICARCE55724.2022.10046584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chemical process industry is currently undergoing a transformation to Chemistry 4.0, where digitalization, modularization, sustainability, and the circular economy are coming into focus. A growing interest in the use of process data with the aim of gaining a better understanding of the production process and conserving resources can be observed. Data-driven modeling is used in chemical industry when the production process is too complex to be described by chemical laws. Gaining knowledge of the chemical relationships can lead to resource-conserving production. In this paper, a framework to optimize the process of data-driven modeling in an industrial environment is presented. For generating data-driven models of industrial processes, many manual and time-consuming steps have to be carried out. This leads to delay in information acquisition and process optimization. Therefore, the presented framework automates these steps to accelerate the process of data-driven modeling. The steps are to extract the data from a process control system (PCS), make the data available for data-driven modeling, train the model, and deploy the model for predicting the process. To achieve high availability of the data and generate data-driven models, cloud services are used. The framework of this paper is applied to a high-throughput formulation system (HTFS) for coatings. In this paper, Gaussian processes are used for data-driven modeling. The evaluation of the framework shows the usefulness in this domain, but also the flexibility and scalability of this framework.\",\"PeriodicalId\":416305,\"journal\":{\"name\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCE55724.2022.10046584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

化学过程工业目前正在向化学4.0转型,数字化、模块化、可持续性和循环经济成为重点。可以观察到,为了更好地了解生产过程和节约资源,人们对使用过程数据越来越感兴趣。当化工生产过程过于复杂,无法用化学定律来描述时,数据驱动建模被用于化工行业。获得化学关系的知识可以导致资源节约的生产。本文提出了一个优化工业环境下数据驱动建模过程的框架。为了生成工业过程的数据驱动模型,必须执行许多手动且耗时的步骤。这将导致信息获取和流程优化的延迟。因此,所提出的框架将这些步骤自动化,以加速数据驱动建模的过程。步骤是从过程控制系统(PCS)中提取数据,使数据可用于数据驱动的建模,训练模型,并部署模型以预测过程。为了实现数据的高可用性并生成数据驱动的模型,需要使用云服务。本文的框架应用于涂料的高通量配方系统。本文采用高斯过程进行数据驱动建模。对该框架的评估表明了该框架在该领域的实用性,以及该框架的灵活性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Framework for Data-Driven Modeling with Cloud Services in the Process Industry
The chemical process industry is currently undergoing a transformation to Chemistry 4.0, where digitalization, modularization, sustainability, and the circular economy are coming into focus. A growing interest in the use of process data with the aim of gaining a better understanding of the production process and conserving resources can be observed. Data-driven modeling is used in chemical industry when the production process is too complex to be described by chemical laws. Gaining knowledge of the chemical relationships can lead to resource-conserving production. In this paper, a framework to optimize the process of data-driven modeling in an industrial environment is presented. For generating data-driven models of industrial processes, many manual and time-consuming steps have to be carried out. This leads to delay in information acquisition and process optimization. Therefore, the presented framework automates these steps to accelerate the process of data-driven modeling. The steps are to extract the data from a process control system (PCS), make the data available for data-driven modeling, train the model, and deploy the model for predicting the process. To achieve high availability of the data and generate data-driven models, cloud services are used. The framework of this paper is applied to a high-throughput formulation system (HTFS) for coatings. In this paper, Gaussian processes are used for data-driven modeling. The evaluation of the framework shows the usefulness in this domain, but also the flexibility and scalability of this framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信