F. Putze, Jutta Hild, A. Sano, Enkelejda Kasneci, E. Solovey, Tanja Schultz
{"title":"从多模态信号建模认知过程","authors":"F. Putze, Jutta Hild, A. Sano, Enkelejda Kasneci, E. Solovey, Tanja Schultz","doi":"10.1145/3242969.3265861","DOIUrl":null,"url":null,"abstract":"Multimodal signals allow us to gain insights into internal cognitive processes of a person, for example: speech and gesture analysis yields cues about hesitations, knowledgeability, or alertness, eye tracking yields information about a person's focus of attention, task, or cognitive state, EEG yields information about a person's cognitive load or information appraisal. Capturing cognitive processes is an important research tool to understand human behavior as well as a crucial part of a user model to an adaptive interactive system such as a robot or a tutoring system. As cognitive processes are often multifaceted, a comprehensive model requires the combination of multiple complementary signals. In this workshop at the ACM International Conference on Multimodal Interfaces (ICMI) conference in Boulder, Colorado, USA, we discussed the state-of-the-art in monitoring and modeling cognitive processes from multi-modal signals.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling Cognitive Processes from Multimodal Signals\",\"authors\":\"F. Putze, Jutta Hild, A. Sano, Enkelejda Kasneci, E. Solovey, Tanja Schultz\",\"doi\":\"10.1145/3242969.3265861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal signals allow us to gain insights into internal cognitive processes of a person, for example: speech and gesture analysis yields cues about hesitations, knowledgeability, or alertness, eye tracking yields information about a person's focus of attention, task, or cognitive state, EEG yields information about a person's cognitive load or information appraisal. Capturing cognitive processes is an important research tool to understand human behavior as well as a crucial part of a user model to an adaptive interactive system such as a robot or a tutoring system. As cognitive processes are often multifaceted, a comprehensive model requires the combination of multiple complementary signals. In this workshop at the ACM International Conference on Multimodal Interfaces (ICMI) conference in Boulder, Colorado, USA, we discussed the state-of-the-art in monitoring and modeling cognitive processes from multi-modal signals.\",\"PeriodicalId\":308751,\"journal\":{\"name\":\"Proceedings of the 20th ACM International Conference on Multimodal Interaction\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3242969.3265861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3265861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Cognitive Processes from Multimodal Signals
Multimodal signals allow us to gain insights into internal cognitive processes of a person, for example: speech and gesture analysis yields cues about hesitations, knowledgeability, or alertness, eye tracking yields information about a person's focus of attention, task, or cognitive state, EEG yields information about a person's cognitive load or information appraisal. Capturing cognitive processes is an important research tool to understand human behavior as well as a crucial part of a user model to an adaptive interactive system such as a robot or a tutoring system. As cognitive processes are often multifaceted, a comprehensive model requires the combination of multiple complementary signals. In this workshop at the ACM International Conference on Multimodal Interfaces (ICMI) conference in Boulder, Colorado, USA, we discussed the state-of-the-art in monitoring and modeling cognitive processes from multi-modal signals.