{"title":"基于联合时钟门控的超低功耗高灵敏度双反馈边缘触发触发器在生物医学成像中的应用","authors":"S. Prema, N. Karthikeyan, S. Karthik","doi":"10.1166/jmihi.2021.3919","DOIUrl":null,"url":null,"abstract":"To adapt to varied working situations, the latest biomedical imaging applications require low energy consumption, high performance, and extensive energy-performance scalability. State-of-the-art electronics with higher sensitivity, higher counting rate, and finer time resolution are\n required to create higher precision, higher temporal resolution, and maximum contrast biomedical images. In recent days, the system’s power consumption is important critically in modern VLSI circuits particularly for the low power application. In order to decrease the power, a power\n optimization technique must be used at various design levels. The low power use of logic cells is a proficient technique for decreasing the circuit level power. Dual Feedback edge triggered Flip Flop (DFETFF) is considered for biomedical imaging applications in the proposed system. Initially,\n the high dynamic range voltage is given as input signal. The comparator output is then retried at the comparator end. The integration capacitor is employed for storing remaining voltage signal. The comparator voltage is then given to the capacitor reset block. In the proposed work, a capacitor-reset\n block that employs clock signal takes up a dual-feedbackedge-triggered Flip-flop as an alternative of a conventional type for reducing the final output signals errors. Dual feedback loops assure that feedback loops do not tri-state at the time of SET restoration, a scheme that could lead to\n SEUs in latches if a single delay component and a single feedback loop are used. In digital system, Clock gating is a competent method of lessening the overall consumption of power along with deactivating the clock signal selectively and is useful for controlling the usage of clock signal\n asynchronously in reference to input-signal current. The integration-control (Vint) signal is employed in controlling the integration time. On the termination of integration, the signal level phase is kept, also similar one is send to arrangement all through read period. As a result,\n the simulation was carried out after the design layout and the estimations of performance were made and are compared with traditional approaches to prove the proposed mechanism effectiveness for future biomedical applications.","PeriodicalId":393031,"journal":{"name":"J. Medical Imaging Health Informatics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-Low Power and High Sensitivity of Joint Clock Gating Based Dual Feedback Edge Triggered Flip Flop for Biomedical Imaging Applications\",\"authors\":\"S. Prema, N. Karthikeyan, S. Karthik\",\"doi\":\"10.1166/jmihi.2021.3919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To adapt to varied working situations, the latest biomedical imaging applications require low energy consumption, high performance, and extensive energy-performance scalability. State-of-the-art electronics with higher sensitivity, higher counting rate, and finer time resolution are\\n required to create higher precision, higher temporal resolution, and maximum contrast biomedical images. In recent days, the system’s power consumption is important critically in modern VLSI circuits particularly for the low power application. In order to decrease the power, a power\\n optimization technique must be used at various design levels. The low power use of logic cells is a proficient technique for decreasing the circuit level power. Dual Feedback edge triggered Flip Flop (DFETFF) is considered for biomedical imaging applications in the proposed system. Initially,\\n the high dynamic range voltage is given as input signal. The comparator output is then retried at the comparator end. The integration capacitor is employed for storing remaining voltage signal. The comparator voltage is then given to the capacitor reset block. In the proposed work, a capacitor-reset\\n block that employs clock signal takes up a dual-feedbackedge-triggered Flip-flop as an alternative of a conventional type for reducing the final output signals errors. Dual feedback loops assure that feedback loops do not tri-state at the time of SET restoration, a scheme that could lead to\\n SEUs in latches if a single delay component and a single feedback loop are used. In digital system, Clock gating is a competent method of lessening the overall consumption of power along with deactivating the clock signal selectively and is useful for controlling the usage of clock signal\\n asynchronously in reference to input-signal current. The integration-control (Vint) signal is employed in controlling the integration time. On the termination of integration, the signal level phase is kept, also similar one is send to arrangement all through read period. As a result,\\n the simulation was carried out after the design layout and the estimations of performance were made and are compared with traditional approaches to prove the proposed mechanism effectiveness for future biomedical applications.\",\"PeriodicalId\":393031,\"journal\":{\"name\":\"J. Medical Imaging Health Informatics\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Medical Imaging Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jmihi.2021.3919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Imaging Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2021.3919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-Low Power and High Sensitivity of Joint Clock Gating Based Dual Feedback Edge Triggered Flip Flop for Biomedical Imaging Applications
To adapt to varied working situations, the latest biomedical imaging applications require low energy consumption, high performance, and extensive energy-performance scalability. State-of-the-art electronics with higher sensitivity, higher counting rate, and finer time resolution are
required to create higher precision, higher temporal resolution, and maximum contrast biomedical images. In recent days, the system’s power consumption is important critically in modern VLSI circuits particularly for the low power application. In order to decrease the power, a power
optimization technique must be used at various design levels. The low power use of logic cells is a proficient technique for decreasing the circuit level power. Dual Feedback edge triggered Flip Flop (DFETFF) is considered for biomedical imaging applications in the proposed system. Initially,
the high dynamic range voltage is given as input signal. The comparator output is then retried at the comparator end. The integration capacitor is employed for storing remaining voltage signal. The comparator voltage is then given to the capacitor reset block. In the proposed work, a capacitor-reset
block that employs clock signal takes up a dual-feedbackedge-triggered Flip-flop as an alternative of a conventional type for reducing the final output signals errors. Dual feedback loops assure that feedback loops do not tri-state at the time of SET restoration, a scheme that could lead to
SEUs in latches if a single delay component and a single feedback loop are used. In digital system, Clock gating is a competent method of lessening the overall consumption of power along with deactivating the clock signal selectively and is useful for controlling the usage of clock signal
asynchronously in reference to input-signal current. The integration-control (Vint) signal is employed in controlling the integration time. On the termination of integration, the signal level phase is kept, also similar one is send to arrangement all through read period. As a result,
the simulation was carried out after the design layout and the estimations of performance were made and are compared with traditional approaches to prove the proposed mechanism effectiveness for future biomedical applications.