数据驱动的带内网络遥测监控聚合流量方法

M. Lavassani, J. Åkerberg, M. Björkman
{"title":"数据驱动的带内网络遥测监控聚合流量方法","authors":"M. Lavassani, J. Åkerberg, M. Björkman","doi":"10.1109/NCA57778.2022.10013583","DOIUrl":null,"url":null,"abstract":"Under the vision of industry 4.0, industrial networks are expected to accommodate a large amount of aggregated traffic of both operation and information technologies to enable the integration of innovative services and new applications. In this respect, guaranteeing the uninterrupted operation of the installed systems is an indisputable condition for network management. Network measurement and performance monitoring of the underlying communication states can provide invaluable insight for safeguarding the system performance by estimating required and available resources for flexible integration without risking network interruption or degrading network performance. In this work, we propose a data-driven in-band telemetry method to monitor the aggregated traffic of the network at the switch level. The method learns and models the communication states by local network-level measurement of communication intensity. The approximated model parameters provide information for network management for prognostic purposes and congestion avoidance resource planning when integrating new applications. Applying the method also addresses the consequence of telemetry data overhead on QoS since the transmission of telemetry packets can be done based on the current state of the network. The monitoring at the switch level is a step towards the Network-AI for future industrial networks.","PeriodicalId":251728,"journal":{"name":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven Method for In-band Network Telemetry Monitoring of Aggregated Traffic\",\"authors\":\"M. Lavassani, J. Åkerberg, M. Björkman\",\"doi\":\"10.1109/NCA57778.2022.10013583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the vision of industry 4.0, industrial networks are expected to accommodate a large amount of aggregated traffic of both operation and information technologies to enable the integration of innovative services and new applications. In this respect, guaranteeing the uninterrupted operation of the installed systems is an indisputable condition for network management. Network measurement and performance monitoring of the underlying communication states can provide invaluable insight for safeguarding the system performance by estimating required and available resources for flexible integration without risking network interruption or degrading network performance. In this work, we propose a data-driven in-band telemetry method to monitor the aggregated traffic of the network at the switch level. The method learns and models the communication states by local network-level measurement of communication intensity. The approximated model parameters provide information for network management for prognostic purposes and congestion avoidance resource planning when integrating new applications. Applying the method also addresses the consequence of telemetry data overhead on QoS since the transmission of telemetry packets can be done based on the current state of the network. The monitoring at the switch level is a step towards the Network-AI for future industrial networks.\",\"PeriodicalId\":251728,\"journal\":{\"name\":\"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA57778.2022.10013583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA57778.2022.10013583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工业4.0的愿景下,工业网络有望容纳大量运营和信息技术的聚合流量,从而实现创新服务和新应用的融合。在这方面,保证所安装系统的不间断运行是网络管理的一个不容置疑的条件。底层通信状态的网络度量和性能监视可以提供宝贵的见解,通过估算灵活集成所需的和可用的资源来保护系统性能,而不会冒网络中断或降低网络性能的风险。在这项工作中,我们提出了一种数据驱动的带内遥测方法来监控交换机级别的网络聚合流量。该方法通过局部网络级通信强度测量来学习和建模通信状态。在集成新应用程序时,近似的模型参数为网络管理提供了用于预测目的和避免拥塞的资源规划的信息。应用该方法还解决了遥测数据开销对QoS的影响,因为遥测数据包的传输可以基于网络的当前状态来完成。交换机级别的监控是面向未来工业网络的网络-人工智能的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven Method for In-band Network Telemetry Monitoring of Aggregated Traffic
Under the vision of industry 4.0, industrial networks are expected to accommodate a large amount of aggregated traffic of both operation and information technologies to enable the integration of innovative services and new applications. In this respect, guaranteeing the uninterrupted operation of the installed systems is an indisputable condition for network management. Network measurement and performance monitoring of the underlying communication states can provide invaluable insight for safeguarding the system performance by estimating required and available resources for flexible integration without risking network interruption or degrading network performance. In this work, we propose a data-driven in-band telemetry method to monitor the aggregated traffic of the network at the switch level. The method learns and models the communication states by local network-level measurement of communication intensity. The approximated model parameters provide information for network management for prognostic purposes and congestion avoidance resource planning when integrating new applications. Applying the method also addresses the consequence of telemetry data overhead on QoS since the transmission of telemetry packets can be done based on the current state of the network. The monitoring at the switch level is a step towards the Network-AI for future industrial networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信