{"title":"数据驱动的带内网络遥测监控聚合流量方法","authors":"M. Lavassani, J. Åkerberg, M. Björkman","doi":"10.1109/NCA57778.2022.10013583","DOIUrl":null,"url":null,"abstract":"Under the vision of industry 4.0, industrial networks are expected to accommodate a large amount of aggregated traffic of both operation and information technologies to enable the integration of innovative services and new applications. In this respect, guaranteeing the uninterrupted operation of the installed systems is an indisputable condition for network management. Network measurement and performance monitoring of the underlying communication states can provide invaluable insight for safeguarding the system performance by estimating required and available resources for flexible integration without risking network interruption or degrading network performance. In this work, we propose a data-driven in-band telemetry method to monitor the aggregated traffic of the network at the switch level. The method learns and models the communication states by local network-level measurement of communication intensity. The approximated model parameters provide information for network management for prognostic purposes and congestion avoidance resource planning when integrating new applications. Applying the method also addresses the consequence of telemetry data overhead on QoS since the transmission of telemetry packets can be done based on the current state of the network. The monitoring at the switch level is a step towards the Network-AI for future industrial networks.","PeriodicalId":251728,"journal":{"name":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven Method for In-band Network Telemetry Monitoring of Aggregated Traffic\",\"authors\":\"M. Lavassani, J. Åkerberg, M. Björkman\",\"doi\":\"10.1109/NCA57778.2022.10013583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the vision of industry 4.0, industrial networks are expected to accommodate a large amount of aggregated traffic of both operation and information technologies to enable the integration of innovative services and new applications. In this respect, guaranteeing the uninterrupted operation of the installed systems is an indisputable condition for network management. Network measurement and performance monitoring of the underlying communication states can provide invaluable insight for safeguarding the system performance by estimating required and available resources for flexible integration without risking network interruption or degrading network performance. In this work, we propose a data-driven in-band telemetry method to monitor the aggregated traffic of the network at the switch level. The method learns and models the communication states by local network-level measurement of communication intensity. The approximated model parameters provide information for network management for prognostic purposes and congestion avoidance resource planning when integrating new applications. Applying the method also addresses the consequence of telemetry data overhead on QoS since the transmission of telemetry packets can be done based on the current state of the network. The monitoring at the switch level is a step towards the Network-AI for future industrial networks.\",\"PeriodicalId\":251728,\"journal\":{\"name\":\"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA57778.2022.10013583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA57778.2022.10013583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-driven Method for In-band Network Telemetry Monitoring of Aggregated Traffic
Under the vision of industry 4.0, industrial networks are expected to accommodate a large amount of aggregated traffic of both operation and information technologies to enable the integration of innovative services and new applications. In this respect, guaranteeing the uninterrupted operation of the installed systems is an indisputable condition for network management. Network measurement and performance monitoring of the underlying communication states can provide invaluable insight for safeguarding the system performance by estimating required and available resources for flexible integration without risking network interruption or degrading network performance. In this work, we propose a data-driven in-band telemetry method to monitor the aggregated traffic of the network at the switch level. The method learns and models the communication states by local network-level measurement of communication intensity. The approximated model parameters provide information for network management for prognostic purposes and congestion avoidance resource planning when integrating new applications. Applying the method also addresses the consequence of telemetry data overhead on QoS since the transmission of telemetry packets can be done based on the current state of the network. The monitoring at the switch level is a step towards the Network-AI for future industrial networks.