利用copula对多维数据进行降维的新方法

Rima Houari, A. Bounceur, Mohand Tahar Kechadi
{"title":"利用copula对多维数据进行降维的新方法","authors":"Rima Houari, A. Bounceur, Mohand Tahar Kechadi","doi":"10.1109/ISPS.2013.6581491","DOIUrl":null,"url":null,"abstract":"A new technique for the Dimensionality Reduction of Multi-Dimensional Data is presented in this paper. This technique employs the theory of Copulas to estimate the multivariate joint probability distribution without constraints to specific types of marginal distributions of random variables that represent the dimensions of our Data. A Copulas-based model, provides a complete and scale-free description of dependence that is more suitable to be modeled using well-known multivariate parametric laws. The model can be readily used for comparing of dependence of random variables by estimating the parameters of the Copula and to better see the relationship between data. This dependence is thereafter used for detecting the Redundant Values and noise in order to clean the original data, reduce them (eliminate Redundant attributes) and obtain representative Samples of good quality. We compared the proposed approach with singular values decomposition (SVD) technique, one of the most efficient method of Data mining.","PeriodicalId":222438,"journal":{"name":"2013 11th International Symposium on Programming and Systems (ISPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new method for dimensionality reduction of multi-dimensional data using Copulas\",\"authors\":\"Rima Houari, A. Bounceur, Mohand Tahar Kechadi\",\"doi\":\"10.1109/ISPS.2013.6581491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new technique for the Dimensionality Reduction of Multi-Dimensional Data is presented in this paper. This technique employs the theory of Copulas to estimate the multivariate joint probability distribution without constraints to specific types of marginal distributions of random variables that represent the dimensions of our Data. A Copulas-based model, provides a complete and scale-free description of dependence that is more suitable to be modeled using well-known multivariate parametric laws. The model can be readily used for comparing of dependence of random variables by estimating the parameters of the Copula and to better see the relationship between data. This dependence is thereafter used for detecting the Redundant Values and noise in order to clean the original data, reduce them (eliminate Redundant attributes) and obtain representative Samples of good quality. We compared the proposed approach with singular values decomposition (SVD) technique, one of the most efficient method of Data mining.\",\"PeriodicalId\":222438,\"journal\":{\"name\":\"2013 11th International Symposium on Programming and Systems (ISPS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th International Symposium on Programming and Systems (ISPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPS.2013.6581491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Symposium on Programming and Systems (ISPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPS.2013.6581491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种新的多维数据降维技术。该技术采用copula理论来估计多元联合概率分布,而不受代表数据维度的随机变量的特定类型的边际分布的约束。一个基于copulas的模型,提供了一个完整的和无标度的依赖性描述,更适合使用众所周知的多变量参数定律建模。该模型可方便地用于通过估计Copula的参数来比较随机变量之间的相关性,并能更好地看到数据之间的关系。这种依赖性随后被用于检测冗余值和噪声,以清理原始数据,减少它们(消除冗余属性)并获得高质量的代表性样本。我们将该方法与最有效的数据挖掘方法之一奇异值分解(SVD)技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for dimensionality reduction of multi-dimensional data using Copulas
A new technique for the Dimensionality Reduction of Multi-Dimensional Data is presented in this paper. This technique employs the theory of Copulas to estimate the multivariate joint probability distribution without constraints to specific types of marginal distributions of random variables that represent the dimensions of our Data. A Copulas-based model, provides a complete and scale-free description of dependence that is more suitable to be modeled using well-known multivariate parametric laws. The model can be readily used for comparing of dependence of random variables by estimating the parameters of the Copula and to better see the relationship between data. This dependence is thereafter used for detecting the Redundant Values and noise in order to clean the original data, reduce them (eliminate Redundant attributes) and obtain representative Samples of good quality. We compared the proposed approach with singular values decomposition (SVD) technique, one of the most efficient method of Data mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信