一种快速便携的均匀准随机数发生器

F. Sezgin
{"title":"一种快速便携的均匀准随机数发生器","authors":"F. Sezgin","doi":"10.1145/382264.382434","DOIUrl":null,"url":null,"abstract":"This study discusses and presents some comments on a portable random number generator of very large period based on a generalised multi-moduli congruential method. It also shows that by using 50 generators it is possible to extend the period to 1.01*10105 in a 16 bit machine and by 100 generators to 1.39* 10592 in a 32 bit machine. For each linear congruential parent generator a prime modulus is determined to achieve the maximum period and the best multiplier is found by applying Spectral Test. Some weaknesses and problems are pointed out.","PeriodicalId":138785,"journal":{"name":"ACM Sigsim Simulation Digest","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On a fast and portable uniform quasi-random number generator\",\"authors\":\"F. Sezgin\",\"doi\":\"10.1145/382264.382434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study discusses and presents some comments on a portable random number generator of very large period based on a generalised multi-moduli congruential method. It also shows that by using 50 generators it is possible to extend the period to 1.01*10105 in a 16 bit machine and by 100 generators to 1.39* 10592 in a 32 bit machine. For each linear congruential parent generator a prime modulus is determined to achieve the maximum period and the best multiplier is found by applying Spectral Test. Some weaknesses and problems are pointed out.\",\"PeriodicalId\":138785,\"journal\":{\"name\":\"ACM Sigsim Simulation Digest\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigsim Simulation Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/382264.382434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigsim Simulation Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/382264.382434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了一种基于广义多模同余方法的便携式甚大周期随机数发生器,并给出了一些评论。它还表明,在16位机器上使用50个生成器可以将周期延长到1.01*10105,在32位机器上使用100个生成器可以将周期延长到1.39* 10592。对于每个线性同余母发生器,确定了一个素数模以达到最大周期,并通过谱检验找到了最佳乘法器。指出了一些不足和问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a fast and portable uniform quasi-random number generator
This study discusses and presents some comments on a portable random number generator of very large period based on a generalised multi-moduli congruential method. It also shows that by using 50 generators it is possible to extend the period to 1.01*10105 in a 16 bit machine and by 100 generators to 1.39* 10592 in a 32 bit machine. For each linear congruential parent generator a prime modulus is determined to achieve the maximum period and the best multiplier is found by applying Spectral Test. Some weaknesses and problems are pointed out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信