{"title":"相对熵在泊松和二项信道上的导数","authors":"Camilo G. Taborda, F. Pérez-Cruz","doi":"10.1109/ITW.2012.6404699","DOIUrl":null,"url":null,"abstract":"In this paper it is found that, regardless of the statistics of the input, the derivative of the relative entropy over the Binomial channel can be seen as the expectation of a function that has as argument the mean of the conditional distribution that models the channel. Based on this relationship we formulate a similar expression for the mutual information concept. In addition to this, using the connection between the Binomial and Poisson distribution we develop similar results for the Poisson channel. Novelty of the results presented here lies on the fact that, expressions obtained can be applied to a wide range of scenarios.","PeriodicalId":325771,"journal":{"name":"2012 IEEE Information Theory Workshop","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Derivative of the relative entropy over the poisson and Binomial channel\",\"authors\":\"Camilo G. Taborda, F. Pérez-Cruz\",\"doi\":\"10.1109/ITW.2012.6404699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper it is found that, regardless of the statistics of the input, the derivative of the relative entropy over the Binomial channel can be seen as the expectation of a function that has as argument the mean of the conditional distribution that models the channel. Based on this relationship we formulate a similar expression for the mutual information concept. In addition to this, using the connection between the Binomial and Poisson distribution we develop similar results for the Poisson channel. Novelty of the results presented here lies on the fact that, expressions obtained can be applied to a wide range of scenarios.\",\"PeriodicalId\":325771,\"journal\":{\"name\":\"2012 IEEE Information Theory Workshop\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Information Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2012.6404699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2012.6404699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Derivative of the relative entropy over the poisson and Binomial channel
In this paper it is found that, regardless of the statistics of the input, the derivative of the relative entropy over the Binomial channel can be seen as the expectation of a function that has as argument the mean of the conditional distribution that models the channel. Based on this relationship we formulate a similar expression for the mutual information concept. In addition to this, using the connection between the Binomial and Poisson distribution we develop similar results for the Poisson channel. Novelty of the results presented here lies on the fact that, expressions obtained can be applied to a wide range of scenarios.