Mohammad Pourmostafaei, M. Pourgol-Mohammad, M. Yazdani, Hossein Salimi
{"title":"不确定条件下系统磨损寿命估算","authors":"Mohammad Pourmostafaei, M. Pourgol-Mohammad, M. Yazdani, Hossein Salimi","doi":"10.1115/IMECE2018-87015","DOIUrl":null,"url":null,"abstract":"In this paper, a new model is proposed for system degradation evaluation under sliding wear failure mechanism. This model estimates the material loss by progression of sliding distance. This model is generated by considering physical and geometrical aspects of system under wear mechanism. Several sets of experimental data are used for validation of the presented model. These experimental data are related to pin-on-disc test of Tungsten Carbide pins. These sets of data include initially conformal and non-conformal contacts. One set of data of pin-on-disc test by ASTM-G99 standard is used for additional validation of the model and for investigation of normal load effects on the parameters of presented model. Finally, uncertainty analysis is done by Monte-Carlo simulation to determine the variations of the predicted wear caused material loss.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"System Wear Life Estimation Under Uncertainty\",\"authors\":\"Mohammad Pourmostafaei, M. Pourgol-Mohammad, M. Yazdani, Hossein Salimi\",\"doi\":\"10.1115/IMECE2018-87015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new model is proposed for system degradation evaluation under sliding wear failure mechanism. This model estimates the material loss by progression of sliding distance. This model is generated by considering physical and geometrical aspects of system under wear mechanism. Several sets of experimental data are used for validation of the presented model. These experimental data are related to pin-on-disc test of Tungsten Carbide pins. These sets of data include initially conformal and non-conformal contacts. One set of data of pin-on-disc test by ASTM-G99 standard is used for additional validation of the model and for investigation of normal load effects on the parameters of presented model. Finally, uncertainty analysis is done by Monte-Carlo simulation to determine the variations of the predicted wear caused material loss.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, a new model is proposed for system degradation evaluation under sliding wear failure mechanism. This model estimates the material loss by progression of sliding distance. This model is generated by considering physical and geometrical aspects of system under wear mechanism. Several sets of experimental data are used for validation of the presented model. These experimental data are related to pin-on-disc test of Tungsten Carbide pins. These sets of data include initially conformal and non-conformal contacts. One set of data of pin-on-disc test by ASTM-G99 standard is used for additional validation of the model and for investigation of normal load effects on the parameters of presented model. Finally, uncertainty analysis is done by Monte-Carlo simulation to determine the variations of the predicted wear caused material loss.