试验了准周期双时间尺度模型参数估计的多尺度方法和平均原理

Š. Papáček, C. Matonoha
{"title":"试验了准周期双时间尺度模型参数估计的多尺度方法和平均原理","authors":"Š. Papáček, C. Matonoha","doi":"10.21136/panm.2022.15","DOIUrl":null,"url":null,"abstract":"Some dynamical systems are characterized by more than one time-scale, e.g. two well separated time-scales are typical for quasiperiodic systems. The aim of this paper is to show how singular perturbation methods based on the slow-fast decomposition can serve for an enhanced parameter estimation when the slowly changing features are rigorously treated. Although the ultimate goal is to reduce the standard error for the estimated parameters, here we test two methods for numerical approximations of the solution of associated forward problem: (i) the multiple time-scales method, and (ii) the method of averaging. On a case study, being an under-damped harmonic oscillator containing two state variables and two parameters, the method of averaging gives well (theoretically predicted) results, while the use of multiple time-scales method is not suitable for our purposes.","PeriodicalId":197168,"journal":{"name":"Programs and Algorithms of Numerical Mathematics 21","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the method of multiple scales and the averaging principle for model parameter estimation of quasiperiodic two time-scale models\",\"authors\":\"Š. Papáček, C. Matonoha\",\"doi\":\"10.21136/panm.2022.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some dynamical systems are characterized by more than one time-scale, e.g. two well separated time-scales are typical for quasiperiodic systems. The aim of this paper is to show how singular perturbation methods based on the slow-fast decomposition can serve for an enhanced parameter estimation when the slowly changing features are rigorously treated. Although the ultimate goal is to reduce the standard error for the estimated parameters, here we test two methods for numerical approximations of the solution of associated forward problem: (i) the multiple time-scales method, and (ii) the method of averaging. On a case study, being an under-damped harmonic oscillator containing two state variables and two parameters, the method of averaging gives well (theoretically predicted) results, while the use of multiple time-scales method is not suitable for our purposes.\",\"PeriodicalId\":197168,\"journal\":{\"name\":\"Programs and Algorithms of Numerical Mathematics 21\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programs and Algorithms of Numerical Mathematics 21\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/panm.2022.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programs and Algorithms of Numerical Mathematics 21","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/panm.2022.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有些动力系统具有不止一个时标的特征,例如,准周期系统通常具有两个分离良好的时标。本文的目的是说明当缓慢变化的特征被严格处理时,基于慢速分解的奇异摄动方法如何能够用于增强的参数估计。虽然最终目标是减少估计参数的标准误差,但在这里我们测试了两种方法用于相关正问题解的数值逼近:(i)多时间尺度法和(ii)平均法。在一个案例研究中,作为一个含有两个状态变量和两个参数的欠阻尼谐振子,平均方法给出了很好的(理论上预测的)结果,而使用多时间尺度方法不适合我们的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing the method of multiple scales and the averaging principle for model parameter estimation of quasiperiodic two time-scale models
Some dynamical systems are characterized by more than one time-scale, e.g. two well separated time-scales are typical for quasiperiodic systems. The aim of this paper is to show how singular perturbation methods based on the slow-fast decomposition can serve for an enhanced parameter estimation when the slowly changing features are rigorously treated. Although the ultimate goal is to reduce the standard error for the estimated parameters, here we test two methods for numerical approximations of the solution of associated forward problem: (i) the multiple time-scales method, and (ii) the method of averaging. On a case study, being an under-damped harmonic oscillator containing two state variables and two parameters, the method of averaging gives well (theoretically predicted) results, while the use of multiple time-scales method is not suitable for our purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信