TiB2金属基复合材料定向能沉积316L不锈钢的工艺研究

Yao Ting Ang, S. Sing, J. Lim
{"title":"TiB2金属基复合材料定向能沉积316L不锈钢的工艺研究","authors":"Yao Ting Ang, S. Sing, J. Lim","doi":"10.18063/msam.v1i2.13","DOIUrl":null,"url":null,"abstract":"In addition to laser powder bed fusion, directed energy deposition (DED) is also gaining interest as an effective metal additive manufacturing technique. Due to its system configuration, it is more efficient and flexible for materials development. Therefore, it can be used for processing of metal matrix composites (MMCs) through the use of powder mixture as feedstock. 316L stainless steel has high corrosion resistance, biocompatibility, and ductility. Several studies have shown the feasibility of using DED to process 316L stainless steel. The material properties of 316L stainless steel can be improved using reinforcement particles such as TiB2 to form MMCs. In this study, the effects of process parameters on microstructure and mechanical properties of 316L stainless steel reinforced with TiB2 (316L/TiB2) MMC were studied. The process parameters, including laser power, scanning speed, and hopper speed, were varied and analyzed using Taguchi L9 array. It was found that the process parameters have insignificant effect on the bulk density of the samples produced. Through this study, it is also found that tumble mixing was not suitable for the powder feedstock preparation for MMCs to be processed by DED. The microstructure of DED 316L/TiB2 MMC samples consists of columnar and equiaxed grains. Columnar grains were located within the layers while equiaxed grains were located at the interlayer zones. Fine sub-grains were also observed within these grains and their boundaries were enriched with molybdenum and chromium segregations. Precipitates containing titanium were also observed to segregate at the sub-grain boundaries. Finally, the Vickers microhardness of the DED 316L/TiB2 MMC was found to be similar to pure 316L stainless steel produced by DED.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Process study for directed energy deposition of 316L stainless steel with TiB2 metal matrix composites\",\"authors\":\"Yao Ting Ang, S. Sing, J. Lim\",\"doi\":\"10.18063/msam.v1i2.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In addition to laser powder bed fusion, directed energy deposition (DED) is also gaining interest as an effective metal additive manufacturing technique. Due to its system configuration, it is more efficient and flexible for materials development. Therefore, it can be used for processing of metal matrix composites (MMCs) through the use of powder mixture as feedstock. 316L stainless steel has high corrosion resistance, biocompatibility, and ductility. Several studies have shown the feasibility of using DED to process 316L stainless steel. The material properties of 316L stainless steel can be improved using reinforcement particles such as TiB2 to form MMCs. In this study, the effects of process parameters on microstructure and mechanical properties of 316L stainless steel reinforced with TiB2 (316L/TiB2) MMC were studied. The process parameters, including laser power, scanning speed, and hopper speed, were varied and analyzed using Taguchi L9 array. It was found that the process parameters have insignificant effect on the bulk density of the samples produced. Through this study, it is also found that tumble mixing was not suitable for the powder feedstock preparation for MMCs to be processed by DED. The microstructure of DED 316L/TiB2 MMC samples consists of columnar and equiaxed grains. Columnar grains were located within the layers while equiaxed grains were located at the interlayer zones. Fine sub-grains were also observed within these grains and their boundaries were enriched with molybdenum and chromium segregations. Precipitates containing titanium were also observed to segregate at the sub-grain boundaries. Finally, the Vickers microhardness of the DED 316L/TiB2 MMC was found to be similar to pure 316L stainless steel produced by DED.\",\"PeriodicalId\":422581,\"journal\":{\"name\":\"Materials Science in Additive Manufacturing\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18063/msam.v1i2.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18063/msam.v1i2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

除了激光粉末床熔合,定向能沉积(DED)作为一种有效的金属增材制造技术也引起了人们的兴趣。由于其系统配置,使得材料开发更加高效和灵活。因此,它可以通过使用粉末混合物作为原料来加工金属基复合材料(MMCs)。316L不锈钢具有很高的耐腐蚀性、生物相容性和延展性。几项研究表明,使用DED加工316L不锈钢是可行的。利用TiB2等增强颗粒形成mmc可以改善316L不锈钢的材料性能。研究了工艺参数对TiB2 (316L/TiB2) MMC增强316L不锈钢组织和力学性能的影响。采用田口L9阵列对激光功率、扫描速度、料斗速度等工艺参数进行了变化分析。结果表明,工艺参数对样品的容重影响不显著。通过本研究还发现,转鼓混合并不适合用于DED处理的mmc的粉末原料制备。DED 316L/TiB2 MMC样品的显微组织由柱状和等轴晶组成。柱状晶粒位于层内,等轴晶粒位于层间。晶粒内部还存在细小的亚晶,其边界富集了钼和铬的偏析。含钛析出物在亚晶界处也有偏析。最后,发现DED 316L/TiB2 MMC的维氏显微硬度与DED生产的纯316L不锈钢相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process study for directed energy deposition of 316L stainless steel with TiB2 metal matrix composites
In addition to laser powder bed fusion, directed energy deposition (DED) is also gaining interest as an effective metal additive manufacturing technique. Due to its system configuration, it is more efficient and flexible for materials development. Therefore, it can be used for processing of metal matrix composites (MMCs) through the use of powder mixture as feedstock. 316L stainless steel has high corrosion resistance, biocompatibility, and ductility. Several studies have shown the feasibility of using DED to process 316L stainless steel. The material properties of 316L stainless steel can be improved using reinforcement particles such as TiB2 to form MMCs. In this study, the effects of process parameters on microstructure and mechanical properties of 316L stainless steel reinforced with TiB2 (316L/TiB2) MMC were studied. The process parameters, including laser power, scanning speed, and hopper speed, were varied and analyzed using Taguchi L9 array. It was found that the process parameters have insignificant effect on the bulk density of the samples produced. Through this study, it is also found that tumble mixing was not suitable for the powder feedstock preparation for MMCs to be processed by DED. The microstructure of DED 316L/TiB2 MMC samples consists of columnar and equiaxed grains. Columnar grains were located within the layers while equiaxed grains were located at the interlayer zones. Fine sub-grains were also observed within these grains and their boundaries were enriched with molybdenum and chromium segregations. Precipitates containing titanium were also observed to segregate at the sub-grain boundaries. Finally, the Vickers microhardness of the DED 316L/TiB2 MMC was found to be similar to pure 316L stainless steel produced by DED.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信