FC-MST:多媒体概念分类的特征相关最大生成树

Hsin-Yu Ha, Shu‐Ching Chen, Min Chen
{"title":"FC-MST:多媒体概念分类的特征相关最大生成树","authors":"Hsin-Yu Ha, Shu‐Ching Chen, Min Chen","doi":"10.1109/ICOSC.2015.7050820","DOIUrl":null,"url":null,"abstract":"Feature selection is an actively researched topic in varies domains, mainly owing to its ability in greatly reducing feature space and associated computational time. Given the explosive growth of high-dimensional multimedia data, a well-designed feature selection method can be leveraged in classifying multimedia contents into high-level semantic concepts. In this paper we present a multi-phase feature selection method using maximum spanning tree built from feature correlation among multiple modalities (FC-MST). The method aims to first thoroughly explore not only the correlation between features within and across modalities, but also the association of features towards semantic concepts. Secondly, with the correlations, we identify important features and exclude redundant or irrelevant ones. The proposed method is tested on a well-known benchmark multimedia data set called NUS-WIDE and the experimental results show that it outperforms four well-known feature selection methods in all three important measurement metrics.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"FC-MST: Feature correlation maximum spanning tree for multimedia concept classification\",\"authors\":\"Hsin-Yu Ha, Shu‐Ching Chen, Min Chen\",\"doi\":\"10.1109/ICOSC.2015.7050820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is an actively researched topic in varies domains, mainly owing to its ability in greatly reducing feature space and associated computational time. Given the explosive growth of high-dimensional multimedia data, a well-designed feature selection method can be leveraged in classifying multimedia contents into high-level semantic concepts. In this paper we present a multi-phase feature selection method using maximum spanning tree built from feature correlation among multiple modalities (FC-MST). The method aims to first thoroughly explore not only the correlation between features within and across modalities, but also the association of features towards semantic concepts. Secondly, with the correlations, we identify important features and exclude redundant or irrelevant ones. The proposed method is tested on a well-known benchmark multimedia data set called NUS-WIDE and the experimental results show that it outperforms four well-known feature selection methods in all three important measurement metrics.\",\"PeriodicalId\":126701,\"journal\":{\"name\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2015.7050820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

特征选择是一个被广泛研究的领域,主要是因为它能够大大减少特征空间和相关的计算时间。鉴于高维多媒体数据的爆炸性增长,设计良好的特征选择方法可以用于将多媒体内容分类为高级语义概念。本文提出了一种基于多模态特征相关性构建的最大生成树的多阶段特征选择方法(FC-MST)。该方法旨在首先深入探索模态内部和跨模态特征之间的相关性,以及特征与语义概念之间的关联。其次,通过相关性,我们可以识别重要的特征并排除冗余或不相关的特征。在一个著名的多媒体基准数据集NUS-WIDE上进行了测试,实验结果表明,该方法在三个重要度量指标上都优于四种知名的特征选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FC-MST: Feature correlation maximum spanning tree for multimedia concept classification
Feature selection is an actively researched topic in varies domains, mainly owing to its ability in greatly reducing feature space and associated computational time. Given the explosive growth of high-dimensional multimedia data, a well-designed feature selection method can be leveraged in classifying multimedia contents into high-level semantic concepts. In this paper we present a multi-phase feature selection method using maximum spanning tree built from feature correlation among multiple modalities (FC-MST). The method aims to first thoroughly explore not only the correlation between features within and across modalities, but also the association of features towards semantic concepts. Secondly, with the correlations, we identify important features and exclude redundant or irrelevant ones. The proposed method is tested on a well-known benchmark multimedia data set called NUS-WIDE and the experimental results show that it outperforms four well-known feature selection methods in all three important measurement metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信