基于自然语言处理技术的电影信息检索文本生成研究

Jinyuan Zhang, X. Xiao, Ke Chen
{"title":"基于自然语言处理技术的电影信息检索文本生成研究","authors":"Jinyuan Zhang, X. Xiao, Ke Chen","doi":"10.1109/ICCSMT54525.2021.00070","DOIUrl":null,"url":null,"abstract":"The rapid development of the film industry and the complexity of related information pose challenges to effective film information retrieval. NLP technology has been widely used and is very suitable for film-related information extraction, processing and retrieval. Based on natural language processing technology, this paper researches film information retrieval text generation. First, this paper implements a movie information knowledge graph containing 5044 ontologies and 22,351 triples; then, this paper uses a dictionary-based named entity recognition method to extract key information from the retrieval problem and uses a rule-based method to generate the corresponding information. In order to obtain more objective evaluation information of related movies, this paper also uses the LSTM network model to conduct sentiment analysis of movie review information and adds this information to the knowledge graph to obtain richer movie information. The research in this paper can promote the intelligent retrieval of movie information.","PeriodicalId":304337,"journal":{"name":"2021 2nd International Conference on Computer Science and Management Technology (ICCSMT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Text Generation of Movie Information Retrieval Based on Natural Language Processing Technology\",\"authors\":\"Jinyuan Zhang, X. Xiao, Ke Chen\",\"doi\":\"10.1109/ICCSMT54525.2021.00070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of the film industry and the complexity of related information pose challenges to effective film information retrieval. NLP technology has been widely used and is very suitable for film-related information extraction, processing and retrieval. Based on natural language processing technology, this paper researches film information retrieval text generation. First, this paper implements a movie information knowledge graph containing 5044 ontologies and 22,351 triples; then, this paper uses a dictionary-based named entity recognition method to extract key information from the retrieval problem and uses a rule-based method to generate the corresponding information. In order to obtain more objective evaluation information of related movies, this paper also uses the LSTM network model to conduct sentiment analysis of movie review information and adds this information to the knowledge graph to obtain richer movie information. The research in this paper can promote the intelligent retrieval of movie information.\",\"PeriodicalId\":304337,\"journal\":{\"name\":\"2021 2nd International Conference on Computer Science and Management Technology (ICCSMT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Computer Science and Management Technology (ICCSMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSMT54525.2021.00070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Computer Science and Management Technology (ICCSMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSMT54525.2021.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电影产业的快速发展和相关信息的复杂性对有效的电影信息检索提出了挑战。自然语言处理技术已经得到了广泛的应用,非常适合于电影相关信息的提取、处理和检索。基于自然语言处理技术,对电影信息检索文本生成进行了研究。首先,本文实现了一个包含5044个本体和22351个三元组的电影信息知识图谱;然后,采用基于字典的命名实体识别方法从检索问题中提取关键信息,并采用基于规则的方法生成相应的信息。为了获得更客观的相关电影评价信息,本文还利用LSTM网络模型对影评信息进行情感分析,并将这些信息加入到知识图中,从而获得更丰富的电影信息。本文的研究可以促进电影信息的智能检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Text Generation of Movie Information Retrieval Based on Natural Language Processing Technology
The rapid development of the film industry and the complexity of related information pose challenges to effective film information retrieval. NLP technology has been widely used and is very suitable for film-related information extraction, processing and retrieval. Based on natural language processing technology, this paper researches film information retrieval text generation. First, this paper implements a movie information knowledge graph containing 5044 ontologies and 22,351 triples; then, this paper uses a dictionary-based named entity recognition method to extract key information from the retrieval problem and uses a rule-based method to generate the corresponding information. In order to obtain more objective evaluation information of related movies, this paper also uses the LSTM network model to conduct sentiment analysis of movie review information and adds this information to the knowledge graph to obtain richer movie information. The research in this paper can promote the intelligent retrieval of movie information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信