Мануэль Ордонез Кабрера, M. Ordóñez Cabrera, A. Rosalsky, Mehmet Unver, Андрей Игоревич Володин, Andrei Volodin
{"title":"用幂级数可和性方法得到一致可积性的一个新版本","authors":"Мануэль Ордонез Кабрера, M. Ordóñez Cabrera, A. Rosalsky, Mehmet Unver, Андрей Игоревич Володин, Andrei Volodin","doi":"10.4213/tvp5398","DOIUrl":null,"url":null,"abstract":"Равномерная интегрируемость является важным понятием в теории вероятностей и в функциональном анализе, поскольку играет важную роль в установлении законов больших чисел. В литературе можно найти различные варианты понятия равномерной интегрируемости. Некоторые из них определяются с помощью матричных методов суммирования, например суммирования по матрице Чезаро. В этой статье мы вводим новый вариант понятия равномерной интегрируемости, используя методы суммирования по степенным рядам. В статье исследуется связь предлагаемого метода с предыдущими понятиями и приводятся результаты о законе больших чисел в пространствах $L_{1}$ и $L_{2}$.","PeriodicalId":132929,"journal":{"name":"Teoriya Veroyatnostei i ee Primeneniya","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new version of uniform integrability via power series summability methods\",\"authors\":\"Мануэль Ордонез Кабрера, M. Ordóñez Cabrera, A. Rosalsky, Mehmet Unver, Андрей Игоревич Володин, Andrei Volodin\",\"doi\":\"10.4213/tvp5398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Равномерная интегрируемость является важным понятием в теории вероятностей и в функциональном анализе, поскольку играет важную роль в установлении законов больших чисел. В литературе можно найти различные варианты понятия равномерной интегрируемости. Некоторые из них определяются с помощью матричных методов суммирования, например суммирования по матрице Чезаро. В этой статье мы вводим новый вариант понятия равномерной интегрируемости, используя методы суммирования по степенным рядам. В статье исследуется связь предлагаемого метода с предыдущими понятиями и приводятся результаты о законе больших чисел в пространствах $L_{1}$ и $L_{2}$.\",\"PeriodicalId\":132929,\"journal\":{\"name\":\"Teoriya Veroyatnostei i ee Primeneniya\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teoriya Veroyatnostei i ee Primeneniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/tvp5398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teoriya Veroyatnostei i ee Primeneniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tvp5398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new version of uniform integrability via power series summability methods
Равномерная интегрируемость является важным понятием в теории вероятностей и в функциональном анализе, поскольку играет важную роль в установлении законов больших чисел. В литературе можно найти различные варианты понятия равномерной интегрируемости. Некоторые из них определяются с помощью матричных методов суммирования, например суммирования по матрице Чезаро. В этой статье мы вводим новый вариант понятия равномерной интегрируемости, используя методы суммирования по степенным рядам. В статье исследуется связь предлагаемого метода с предыдущими понятиями и приводятся результаты о законе больших чисел в пространствах $L_{1}$ и $L_{2}$.