{"title":"可定义性等于有界树宽*图的可识别性","authors":"M. Bojanczyk, Michal Pilipczuk","doi":"10.1145/2933575.2934508","DOIUrl":null,"url":null,"abstract":"We prove a conjecture of Courcelle, which states that a graph property is definable in MSO with modular counting predicates on graphs of constant treewidth if, and only if it is recognizable in the following sense: constant-width tree decompositions of graphs satisfying the property can be recognized by tree automata. While the forward implication is a classic fact known as Courcelle’s theorem, the converse direction remained open.","PeriodicalId":206395,"journal":{"name":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Definability equals recognizability for graphs of bounded treewidth *\",\"authors\":\"M. Bojanczyk, Michal Pilipczuk\",\"doi\":\"10.1145/2933575.2934508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a conjecture of Courcelle, which states that a graph property is definable in MSO with modular counting predicates on graphs of constant treewidth if, and only if it is recognizable in the following sense: constant-width tree decompositions of graphs satisfying the property can be recognized by tree automata. While the forward implication is a classic fact known as Courcelle’s theorem, the converse direction remained open.\",\"PeriodicalId\":206395,\"journal\":{\"name\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2933575.2934508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933575.2934508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Definability equals recognizability for graphs of bounded treewidth *
We prove a conjecture of Courcelle, which states that a graph property is definable in MSO with modular counting predicates on graphs of constant treewidth if, and only if it is recognizable in the following sense: constant-width tree decompositions of graphs satisfying the property can be recognized by tree automata. While the forward implication is a classic fact known as Courcelle’s theorem, the converse direction remained open.