发现时空数据集中的持续变化窗口:结果摘要

Xun Zhou, S. Shekhar, Dev Oliver
{"title":"发现时空数据集中的持续变化窗口:结果摘要","authors":"Xun Zhou, S. Shekhar, Dev Oliver","doi":"10.1145/2534921.2534928","DOIUrl":null,"url":null,"abstract":"Given a region S comprised of locations that each have a time series of length |T|, the Persistent Change Windows (PCW) discovery problem aims to find all spatial window and temporal interval pairs <Si, Ti> that exhibit persistent change of attribute values over time. PCW discovery is important for critical societal applications such as detecting desertification, deforestation, and monitoring urban sprawl. The PCW discovery problem is challenging due to the large number of candidate patterns, the lack of monotonicity where sub-regions of a PCW may not show persistent change, the lack of predefined window sizes for the ST windows, and large datasets of detailed resolution and high volume, i.e., spatial big data. Previous approaches in ST change footprint discovery have focused on local spatial footprints for persistent change discovery and may not guarantee completeness. In contrast, we propose a space-time window enumeration and pruning (SWEP) approach that considers zonal spatial footprints when finding persistent change patterns. We provide theoretical analysis of SWEP's correctness, completeness, and space-time complexity. We also present a case study on vegetation data that demonstrates the usefulness of the proposed approach. Experimental evaluation on synthetic data show that the SWEP approach is orders of magnitude faster than the naive approach.","PeriodicalId":416086,"journal":{"name":"International Workshop on Analytics for Big Geospatial Data","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Discovering persistent change windows in spatiotemporal datasets: a summary of results\",\"authors\":\"Xun Zhou, S. Shekhar, Dev Oliver\",\"doi\":\"10.1145/2534921.2534928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a region S comprised of locations that each have a time series of length |T|, the Persistent Change Windows (PCW) discovery problem aims to find all spatial window and temporal interval pairs <Si, Ti> that exhibit persistent change of attribute values over time. PCW discovery is important for critical societal applications such as detecting desertification, deforestation, and monitoring urban sprawl. The PCW discovery problem is challenging due to the large number of candidate patterns, the lack of monotonicity where sub-regions of a PCW may not show persistent change, the lack of predefined window sizes for the ST windows, and large datasets of detailed resolution and high volume, i.e., spatial big data. Previous approaches in ST change footprint discovery have focused on local spatial footprints for persistent change discovery and may not guarantee completeness. In contrast, we propose a space-time window enumeration and pruning (SWEP) approach that considers zonal spatial footprints when finding persistent change patterns. We provide theoretical analysis of SWEP's correctness, completeness, and space-time complexity. We also present a case study on vegetation data that demonstrates the usefulness of the proposed approach. Experimental evaluation on synthetic data show that the SWEP approach is orders of magnitude faster than the naive approach.\",\"PeriodicalId\":416086,\"journal\":{\"name\":\"International Workshop on Analytics for Big Geospatial Data\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Analytics for Big Geospatial Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2534921.2534928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Analytics for Big Geospatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534921.2534928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

给定一个由位置组成的区域S,每个位置都有一个长度为T的时间序列,持续变化窗口(PCW)发现问题的目的是找到所有的空间窗口和时间间隔对,这些空间窗口和时间间隔对随着时间的推移表现出属性值的持续变化。PCW的发现对于检测荒漠化、森林砍伐和监测城市扩张等关键社会应用具有重要意义。由于大量的候选模式,缺乏单调性(PCW的子区域可能不会显示持续变化),缺乏ST窗口的预定义窗口大小,以及详细分辨率和高容量的大型数据集(即空间大数据),PCW发现问题具有挑战性。以前的ST变更足迹发现方法主要集中在局部空间足迹上,用于持久的变更发现,可能不能保证完整性。相比之下,我们提出了一种时空窗口枚举和修剪(SWEP)方法,该方法在寻找持续变化模式时考虑了区域空间足迹。从理论上分析了SWEP的正确性、完备性和时空复杂性。我们还提出了一个关于植被数据的案例研究,以证明所提出方法的有效性。综合数据的实验评价表明,该方法比原始方法快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering persistent change windows in spatiotemporal datasets: a summary of results
Given a region S comprised of locations that each have a time series of length |T|, the Persistent Change Windows (PCW) discovery problem aims to find all spatial window and temporal interval pairs that exhibit persistent change of attribute values over time. PCW discovery is important for critical societal applications such as detecting desertification, deforestation, and monitoring urban sprawl. The PCW discovery problem is challenging due to the large number of candidate patterns, the lack of monotonicity where sub-regions of a PCW may not show persistent change, the lack of predefined window sizes for the ST windows, and large datasets of detailed resolution and high volume, i.e., spatial big data. Previous approaches in ST change footprint discovery have focused on local spatial footprints for persistent change discovery and may not guarantee completeness. In contrast, we propose a space-time window enumeration and pruning (SWEP) approach that considers zonal spatial footprints when finding persistent change patterns. We provide theoretical analysis of SWEP's correctness, completeness, and space-time complexity. We also present a case study on vegetation data that demonstrates the usefulness of the proposed approach. Experimental evaluation on synthetic data show that the SWEP approach is orders of magnitude faster than the naive approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信